

ANNUAL ENVIRONMENT REPORT 2015

ISO 14001 Certified Environmental Management System

ISO 14001 Certificate 489

PJV Annual Environment Report 2015

Barrick Niugini Limited - Porgera Joint Venture

June 2016

POR ENV 1/16

Cover Photo: Igege (SG5) Sunset August 2015

Acknowledgements: National Measurement Institute, CSIRO, Wetlands Research &

Management and Hydrobiology.

Porgera Joint Venture

PO Box 484, Mt Hagen, Western Highlands Province

PAPUA NEW GUINEA

Contact: Charlie Ross – Environment Manager

Email: Chross@porgerajv.com

Telephone: (675) 547 8146

Fax: (675) 547 8965

Telephone: (02)9710 6838 • Facsimile: (02) 9710 6800 • ABN 41 687 119 230

Charlie Ross
Manager, Environment
Porgera Joint Venture
P.O Box 484, Mount Hagen WHP
Papua New Guinea

30 June 2016

Dear Charlie,

Re: Porgera Joint Venture 2015 Annual Environmental Report

Dr Graeme Batley and Dr Simon Apte have reviewed a draft of the 2015 Porgera Joint Venture Annual Environmental Report (AER) and provided detailed comments for consideration. Overall, the draft report was found to be technically sound and generally of extremely high quality. However, as might be expected with a report of this size, a number of minor recommendations were made for improvement. Porgera Joint Venture responded positively to the review team's recommendations and the report was revised in the light of the comments made. The revised report was assessed again by the review team and found to be satisfactory.

We commend your Department on their considerable efforts in producing this comprehensive report.

Sincerely

Dr Simon Apte

Senior Principal Research Scientist

Dr Graeme Batley

Chief Research Scientist

EXECUTIVE SUMMARY

Porgera Gold Mine is located in the Porgera Valley of Enga Province in the Papua New Guinea highlands, approximately 130 km WNW of Mt Hagen. The mine is owned by Barrick Gold (47.5%), Zijin Mining (47.5%) and Mineral Resources Enga (5%), is known as the Porgera Joint Venture (PJV) and is managed by Barrick. The operation consists of an open cut and an underground mine, waste rock dumps, processing facility, gas fired power station, a water supply dam, limestone quarry and lime plant, and ancillary infrastructure. Production commenced in 1990 and is expected to continue until 2027 with an annual production of 500 koz of gold. The site employs approximately 2700 local, national and expatriate staff and contractors.

The operation has a number of unique economic, social and environmental aspects. The environmental aspects are managed through implementation of an Environmental Management System (EMS). The objectives of the EMS are to ensure methodical, consistent and effective control of the mine's environmental aspects so as to ensure compliance with legal and other requirements, which is mitigation of potential environmental risks and continual improvement of environmental performance. The EMS was first certified to the ISO14001:2004 standard in December 2012 and was re-certified in December 2015.

A fundamental element of the EMS is the environmental monitoring and reporting program. The program provides feedback on the effectiveness of the EMS for achieving the stated objectives and therefore allows the operation to confirm which management techniques are working well, and more importantly identify those which require attention to improve their effectiveness.

The purposes of this Annual Environment Report (AER) are to provide an assessment of the overall environmental performance of the operation throughout the previous calendar year, and to assess trends in performance throughout the previous five calendar years. The objectives of this report are thereby aligned with those of the EMS and are to assess:

- 1. Compliance with legal and other requirements;
- 2. The level of potential and actual environmental impact; and
- 3. The environmental performance of the operation.

The first section of the AER describes background environmental conditions by quantifying the natural, non-mine related conditions and changes within the environment. Next the operation's environmental aspects (activities which interact with the environment) are identified and quantified. Then, assessments are made of compliance, mine-related risk, impact and performance, followed by a discussion of the findings and finally, recommendations for improving the environmental management system and the monitoring and reporting program.

Mine Operations and Environmental Aspects

The significant environmental aspects of the operation are: riverine tailings disposal; riverine waste rock disposal; waste rock generation; water extraction and discharge; transport, storage and use of hazardous substances and waste management.

The scope and magnitude of environmental aspects in 2015 were consistent with recent years. There was no change to the area of land held by the mine and the quantity of ore and gold production were comparable with the previous five years. The volume of competent waste rock produced in 2015 was approximately half of that for recent years, with the majority being placed in the Kogai dump. The quantity of incompetent waste rock produced in 2015 was significantly greater than in 2014 due to development of Stage 5C of the open pit and the majority was disposed to Anjolek erodible dump. Anawe erodible dump continued to receive mud trucked from the floor of the open cut mine.

Tailings production also was consistent with previous years, and a significant proportion (9.7%) was diverted from riverine disposal and used for cemented backfill in the underground mine. The volume of tailings diverted in 2015 was the highest in the sites history and is attributed to the high rate of availability of the paste plant and increased underground mining. Tailings quality achieved 100% compliance with the internal site-developed end-of-pipe criterion for cyanide. Variation from the internal pH target (93% compliance) occurred as a result of low pH events in September 2015 associated with interruptions to lime supply to the mine site, however the minimum recorded pH value was pH 6.2, and was only slightly below the target level. Total suspended sediment (TSS) concentrations were comparable to previous years. Concentrations of TSS, dissolved cadmium, copper, iron, nickel and zinc, were elevated compared to upper river reference conditions. Concentrations of weak-acid-extractable arsenic, cadmium, copper, mercury, lead and zinc in tailings solids were elevated relative to the upper river reference conditions. Concentrations of dissolved cadmium, iron, nickel and zinc exhibit an increasing trend over the past 5 years, and all other metals were either stable or decreasing.

Contact rainfall runoff from the site was typical of neutral mine drainage and exhibited elevated sulfate, alkalinity, TSS and concentrations of dissolved cadmium, copper, nickel and zinc.

Background Environmental Conditions

Background environmental conditions in 2015 were influenced by a strong El Niño event which resulted in low rainfall and consequently low river flows throughout the upper rivers in the highlands, the lower rivers along the Strickland floodplain and at Lake Murray and off-river water bodies (ORWBs). Rainfall near the mine site was 14% below average, but was approximately 30% below average in the middle and lower reaches of the Strickland catchment. As a result the rate of dilution provided for mine-related inputs was reduced throughout the receiving environment.

Background conditions for environmental indicators of water quality, sediment quality, metals within the tissue of fish and prawns (tissue metals) and ecosystem health (abundance, richness, biomass and condition of fish and prawn communities), have been established using data collected from test sites prior to the commencement of mining operations (i.e. baseline data), and since operations began from sites that are not potentially influenced by the operation (i.e. reference sites).

Although concentrations of physical and chemical parameters are generally lower at the upper river reference sites than the baseline data from the upper river test sites, the reference sites do exhibit moderate TSS concentrations and detectable concentrations of total arsenic, chromium, nickel and zinc. This indicates that tributaries to the Lagaip-Strickland system have the potential to contribute non-mine derived TSS and some metals to the system. Trends for pH, TSS and dissolved metals at the upper and lower river and at the Lake Murray and ORWB reference sites display no statistically significant changes over time.

Compliance

Legal and other requirements are imposed predominantly by the two environmental permits issued to the mine by the Papua New Guinea Conservation and Environmental Protection Authority (CEPA). The operation complied with 97% of legal and other obligations throughout 2015, with non-compliance related to elevated TSS in discharge from three of the five sewage treatment plants on at least one occasion during the year. Corrective action continues to be applied, and resulted in 100% compliance throughout November and December 2015.

Environmental Risk, Impact and Performance

The methodology for risk and impact assessment has been developed by PJV in accordance with international guidelines and in consultation with external technical experts.

The risk assessment stage is based on the comparison of physical and chemical environmental indicators at sites potentially impacted by the mine (test sites) against trigger values (TVs) derived from a combination of baseline data collected from test sites before development of the mine, reference site data collected from sites within the region that are not potentially influenced by the mine's activities, and international guidelines. It should be noted that the derivation of trigger values from the statistical distribution of baseline and reference site data, rather than "effects-based" trigger values, limits the assessment to only a "screening level" for identification of risk and potential impacts. TVs act as a benchmark to determine whether conditions at test sites pose a risk of causing impact to aquatic ecosystems or human health. Exceeding a TV triggers further investigation to determine whether impact is actually occurring.

Impact assessment is based on the comparison of biological environmental indicators at test sites against biological indicators at reference sites to determine whether environmental aspects of the mine are impacting aquatic ecosystems.

Tests of statistical significance were performed to provide a statistical basis for determining whether risk or impact may exist at a particular test site.

The risk assessment determined that the consistent nature of inputs from the mine, coupled with low river flows, decreased the dilution of mine inputs by natural runoff and sediments within the receiving environment during 2015.

Sediment inputs from the Anjolek and Anawe erodible dumps, tailings, and discharges from 28 level and from Yarik Portal were elevated relative to the upper river reference sites and posed potential risk to the receiving environment. Inputs from the mine and low river flow rates resulted in an increase of the proportion of mine derived TSS within the rivers downstream of the mine. The proportion of mine derived sediment at SG3, 164 km downstream of the mine, was 49% in 2015 compared with 34% in 2014 and a long-term median of 23%. However, this did not result in increased sediment aggradation within the rivers or increases to median concentration of TSS within the rivers and therefore, there was a low risk of impact to the receiving environment associated with the physical effects of sediment during 2015.

Inputs of metals dissolved in water and weak-acid-extractable (WAE) metals in particulates are considered bioavailable and are therefore used to assess risk.

Concentrations of dissolved cadmium, copper, nickel and zinc in tailings were elevated compared with upper river reference conditions and posed a potential risk, as did dissolved cadmium and zinc in drainage discharged from the Kogai and the Anawe North competent waste rock dumps.

WAE arsenic, cadmium, copper, mercury, lead and zinc concentrations in tailings solids posed potential risk, as did WAE lead and zinc concentrations in sediment discharged from Kogai and Anawe North competent waste rock dumps, 28 level and Yarik Portal.

рΗ

Water discharged from the lime plant exhibited elevated pH, however the volume of water discharged from this location was relatively small and the influence of elevated pH was limited to the immediate downstream environment. The pH values of all other discharges from the operation were consistent with upper river water quality TVs and posed low risk of impact to the receiving environment. This was confirmed by the risk assessment results for pH in the upper and lower rivers, Lake Murray and ORWBs where all sites were within the respective upper and lower TVs.

TSS

The tailings discharge and drainage from the open pit, underground mine and the erodible dumps contributed elevated concentrations of TSS to the receiving environment. The risk assessment results indicated that elevated TSS in water posed a potential risk at SG1 in the upper river and at Avu, an oxbow on the Strickland floodplain. Although Avu is located some 600 km downstream from the mine, flood-flow from the Strickland River is the most likely source of elevated TSS.

Silver

Silver in the tailings solids contributed to the receiving environment. The concentrations of dissolved silver in receiving waters and WAE silver in benthic sediments were significantly less than the respective TVs throughout the upper and lower rivers, Lake Murray and ORWBs indicating low risk to the aquatic environment.

Arsenic

The concentrations of dissolved arsenic in tailings and all other discharges from the mine were low, but elevated concentrations of WAE arsenic were measured in the tailings solids. In the receiving environment, dissolved arsenic in water and WAE arsenic in sediment were not elevated at any of the test sites. However, arsenic concentrations in prawn abdomen at Bebelubi in the lower river, exceeded the TV, indicating the potential for environmental impact at this location.

There is an inconsistency between the low concentrations of dissolved arsenic in water and WAE arsenic in benthic sediment within the receiving environment and the bioaccumulation above that measured at the lower river reference site which suggests an alternative pathway of exposure to arsenic is possibly present.

Cadmium

Contributions of dissolved cadmium in water to the receiving environment are occurring from the tailings and the Kogai and Anawe North stable dumps. Within the receiving environment, median concentrations of dissolved cadmium in 2015 exceeded the TV in water only at SG1. WAE cadmium in benthic sediment was not elevated at any of the test sites. However, cadmium in prawn abdomen was significantly greater than the TV at Wasiba and was not significantly different than the respective TV at Wankipe, Bebelubi and Tiumsinawam test sites. The bioaccumulation above that measured at the reference sites indicates the potential for cadmium to cause environmental impact at these sites.

As with arsenic, there appears to be an inconsistency between the low concentrations of dissolved cadmium in water, WAE cadmium in sediment, and accumulation in the tissue of prawns, within the upper and lower river, suggesting an alternate exposure pathway may be present.

Chromium

None of the discharge points from the mine exhibited elevated chromium. Chromium in water and benthic sediments and in tissue metals of fish and prawns indicated low risk of impact throughout the receiving environment.

Copper

Elevated dissolved copper and WAE copper in tailings pose potential risk to the aquatic environment. In the receiving environment, dissolved copper indicated potential risk only at Bebelubi and at Tiumsinawam in the lower river. WAE copper in benthic sediments and copper in fish and prawn tissues were low throughout the river system indicating low risk.

Mercury

Mercury concentrations were low in tailings and other discharges from the mine, as well as in receiving environment water and benthic sediment. Low concentrations of mercury in fish and prawn tissue at all test sites indicate low risk to the aquatic environment.

Nickel

Dissolved nickel was elevated in tailings but was low at test sites throughout the river system. WAE nickel in tailings and in other discharges from the mine was less than the upper river TV indicating low risk. WAE nickel in benthic sediment was low in the upper rivers, but exceeded the respective TVs at SG5 on the lower river and at Lake Murray and at Avu ORWB. Nickel in prawn abdomen was not significantly different from the respective TVs at Wankipe and at Bebelubi and exceeded the TV at Tiumsinawam, which indicates the potential to contribute to environmental impact at these locations.

Lead

Dissolved lead concentrations were low in tailings and all other discharges from the mine site, indicating low risk, which was reflected at all test sites in the receiving environment. WAE lead concentrations in tailings and mine drainage discharges were elevated compared to the TV for the upper rivers, indicating potential risk. Within the receiving environment, WAE lead concentrations in benthic sediment decreased with increasing distance downstream from the mine, and exceeded the TV at SG1, SG2, Wasiba and Wankipe. Lead concentrations in prawn abdomens were significantly greater than the TV at Wasiba and not significantly different from the TVs at Wankipe in the upper river and at Tiumsinawam in the lower river, indicating the potential to cause environmental impact at these sites. The data suggest that the dominant exposure pathway of lead to prawns is via benthic sediment.

Selenium

The concentrations of selenium in discharges from the mine were not elevated in comparison to the upper river reference TVs and concentrations of dissolved selenium in water and WAE selenium in benthic sediment were consistently low throughout the river system. Selenium in prawn abdomen at Bebelubi was not significantly different from the TV. Overall, given the low concentration of dissolved selenium in water and WAE selenium in benthic sediments and throughout the receiving environment, and selenium in prawn abdomen at Wasiba and Bebelubi as the only indications of potential risk, the system-wide risk of selenium is considered low.

Zinc

The concentrations of dissolved zinc were elevated in tailings and in the water discharged from Kogai and Anawe North waste rock dumps. WAE zinc in tailings and sediment contact runoff discharges from the mine site exceeded the upper river TV indicating potential risk. Dissolved zinc in water at SG1 exceeded the TV but WAE zinc in benthic sediment was below the respective TV at all test sites throughout the receiving environment. Concentrations of dissolved zinc and WAE zinc in benthic sediments decreased with increasing distance downstream from the mine site. Zinc concentrations in prawn abdomen at Wasiba and at Bebelubi were not significantly different from the respective TVs, indicating potential risk to aquatic ecosystems at these sites.

Concentrations of metals in fish tissue were low throughout the upper and lower rivers indicating low risk. Concentrations of metals in prawn abdomen in the upper and lower rivers indicated risk in the upper river at Wasiba and Wankipe, and in the lower river at Bebelubi and Tiumsinawam. In most cases the metal concentrations in prawn tissue were not significantly different from the respective TV, so although potential risk was indicated by metal accumulation in prawn abdomen, overall the risk to aquatic ecosystem health is considered low.

In addition to risks posed to aquatic ecosystems within the receiving environment, the mine operations environmental aspects also have the potential to cause risk to human health through exposure to physical and chemical stressors and toxicants. The risk assessment focused on exposure through: consumption of water from known drinking water sources within the villages on the SML and LMPs; contact and incidental consumption of water within the receiving environment where people are known to enter the water for gold panning, fishing or other water-based activities; and the consumption of fish and prawns within the receiving environment.

Risk assessment showed that discharges from the mine do not pose a risk to drinking water sources for villages within the SML and LMPs. Risk is posed to people exposed through dermal contact with undiluted tailings as a result of low pH and elevated concentrations of dissolved cadmium, iron, nickel and zinc. However, low risk was posed through water-based activities downstream from the mine. All tissue metals in fish and prawns at Wasiba and Wankipe in the upper river, and Bebelubi and Tiumsinawam in the lower river were less than the relevant food standard, confirming they are fit for human consumption.

The concentrations of all metals measured in point source emissions at the mine site were less than the relevant Australian National Environment Protection Measure, indicating low risk. However, localised risks to air quality are posed by elevated concentrations of oxides of nitrogen from the Anawe Generator, and elevated particulate matter in discharge from the lime kilns.

Impact assessment was performed based on biological indicators of aquatic ecosystem health to confirm whether risks are resulting in actual impact to aquatic ecosystems. Potential impact is indicated where the trend of a biological indicator at a test site is declining relative to the trend at a reference site. Within the upper rivers, biological indicators show that potential impact is not occurring. In the lower rivers potential impact is indicated by a reduction in prawn condition at Bebelubi relative to the lower river reference sites, all other indicators show no potential impact. Biological monitoring in Lake Murray has not occurred since 2009 due to a lack of community support, data collected between 1993 and 2009 indicates no potential impact in Lake Murray.

Overall, the environmental performance of the operation in 2015 has been consistent with recent years. The site achieved a high level of compliance with legal obligations and the scope and magnitude of environmental aspects were consistent with recent years. The risk to the receiving environment was unchanged in 2015, despite consistent inputs from the mine coupled with reduced river flows and natural sediment inputs throughout the upper and lower rivers system associated with the strong El Niño event which occurred throughout the year. However, the condition of the receiving environment remains consistent with predictions made prior to operations commencing in 1990.

Metals Bioavailability and Bioaccumulation Pathways

The results of the environmental risk assessment indicate inconsistencies between low concentrations of dissolved metals in water and WAE metals in benthic sediment, and bioaccumulation of metals in the tissue of fish and prawns. A possible explanation is the adsorption of dissolved metals onto the fine (<63 um) fraction of sediment particles and the transport of these particles as suspended solids throughout the river system. Upon entering the receiving environment, concentrations of dissolved metals (such as cadmium, nickel and zinc) in water rapidly decrease as a result of a combination of dilution and conversion to particulate form through adsorption to particulate matter. These processes reduce the concentration of dissolved metals within the receiving environment to levels that pose low risk, but at the same time result in metals enrichment of suspended and benthic sediment within the receiving environment.

The segregation of fine and coarse sediment particles is likely to occur during transport along the river system, with the coarse fraction of sediment settling in the upper rivers and the fine fraction remaining suspended throughout the upper rivers and settling when the water flow velocities reduce on the

Strickland lowland. The behaviour of the concentrations of WAE lead in mine-derived sediment associated with both coarse and fine sediment particles appears to follow this pattern. The coarse sediment particles settle in the upper rivers where they comprised >60% by weight of benthic sediment and WAE lead in benthic sediment posed a risk at sites SG1, SG2, Wasiba and Wankipe, the latter which is 116km downstream of the mine. The fine sediment particles settle during lower flow velocities in the lower river where they comprised 57.5% of benthic sediment and WAE lead posed a risk only at Avu, which is approximately 600km downstream of the mine. The occurrence of metal-enriched fine sediment particles as suspended sediment throughout the river system as well as in benthic sediments in the lower river and subsequent ingestion by fish and prawns is proposed as an important exposure pathway. PJV continued to work with CSIRO in 2015 on investigation of bioaccumulation of metals, focusing on the analysis and interpretation of monitoring data.

Recommendations for Improvement

Recommendations are proposed to improve the: certainty of the findings of future reports; assessment methodology; environmental performance; communication of the findings to the many stakeholders; and to reduce environmental risk and impact.

Note that a number of the recommendations from the 2014 AER are still in progress and appear in the list below in addition to new recommendations raised from this year's AER.

Findings and Assessment Methodology

- Continue to investigate options for increasing the frequency of TSS sampling in lower river, Lake Murray and ORWB reference and test sites;
- 2. Continue to investigate potential bioaccumulation pathways for contaminants of concern within the receiving environment;
- 3. Continue to improve the methods for sampling fish and prawn populations to improve catch rates, reduce within-site variability, therefore improving consistency and increasing statistical power;
- 4. Continue to conduct an annual macroinvertebrate survey to establish a robust data set, with the aim of incorporating macroinvertebrates as an additional indicator of impact into future annual environment reports;
- 5. Continue to revise the QA/QC procedures associated with tissue metal sampling;

Reduce Environmental Risk and Impact and Improve Performance

- 6. Continue to investigate options for reducing the bioavailability of metals within the receiving environment;
- Continue to implement the Waste Rock Management Plan to minimise the release of metalliferous drainage from the competent waste rock dumps.

Communication and Engagement

8. Continue to develop and apply a communication plan to the AER each year, including a presentation to the PNG Conservation and Environmental Protection Authority and a Report Card on the river system.

Table of Contents

1	INTF	RODUCTION	ON	1
	1.1	MINE O	PERATIONAL HISTORY AND DESCRIPTION	2
		1.1.1	Staged Development History of the Mine	2
		1.1.2	Mining Operations Overview	5
		1.1.3	Processing Operations Overview	5
2	AER	METHOD	DOLOGY	8
	2.1	RISK AS	SSESSMENT METHODOLOGY	8
	2.2	ESTABI	LISHING TVs	9
		2.2.1	TVs derived from ecological effects data	9
		2.2.2	TVs derived from baseline or regional reference site data	10
		2.2.3	Adopting TVs provided by guidelines	11
		2.2.4	Establishing locally-derived TVs by comparing baseline and reference site data with guidelines and adopting the most relevant	12
	2.3	WATER	QUALITY TVs AND RISK ASSESSMENT MATRICES	12
		2.3.1	TVs for parameters other than pH	12
		2.3.2	TVs for pH	14
	2.4	SEDIME	ENT QUALITY TVs AND RISK ASSESSMENT MATRIX	16
		2.4.1	Tissue Metal TVs and Risk Assessment Matrix	18
	2.5	DRINKII CONSU	NG WATER, AQUATIC RECREATION, FISH AND PRAWN IMPTION, AIR QUALITY	19
	2.6	IMPACT	Γ ASSESSMENT METHODOLOGY	21
		2.6.1	Fish and Prawns	21
		2.6.2	Benthic Macroinvertebrates	23
	2.7	TESTIN	IG FOR STATISTICAL SIGNIFICANCE	24
3	THE	ENVIRO	NMENTAL MONITORING PROGRAM	25
	3.1	ENVIRO	DNMENTAL ASPECTS	25
	3.2	ENVIRO	DNMENTAL CONDITIONS	26
		3.2.1	Indicator Parameters	26
		3.2.2	Monitoring Locations	27
		3.2.3	Schedule and Execution	32
		3.2.4	QA/QC	33
4	OPE	RATIONS	S AND ENVIRONMENTAL ASPECTS	34
	4.1	PRODU	ICTION	35
		4.1.1	Mining and Processing Operations	35
		4.1.2	Total Ore Processed	35
		4.1.3	Gold Production	36
	4.2	WATER	RUSE	37
	4.3	LAND D	DISTURBANCE	37
		4.3.1	Land Disturbance	37
	4.4	WASTE	ROCK PRODUCTION	39
		4.4.1	Kogai Competent Dump	40

		4.4.2	Anawe North Competent Dump	41
	4.5	INCOM	PETENT WASTE ROCK DISPOSAL	42
	4.6	STATUS	S OF THE ERODIBLE DUMPS IN 2015	45
		4.6.1	Anawe Erodible Dump	45
		4.6.2	Anjolek Erodible Dump	47
	4.7	TAILING	GS DISPOSAL	48
		4.7.1	Riverine Tailings Disposal	48
		4.7.2	Tailings used as Underground Mine Backfill	50
	4.8	TAILING	GS QUALITY	50
	4.10	SEDIME	ENT CONTRIBUTIONS TO THE RIVER SYSTEM	63
	4.11	OTHER	DISCHARGES TO WATER	66
		4.11.1	Treated Sewage Effluent	66
		4.11.2	Oil/Water Separator Effluent	68
		4.11.3	Mine Contact Runoff	68
	4.12	POINT S	SOURCE EMISSIONS TO AIR	76
	4.13	GREEN	HOUSE GAS AND ENERGY	76
	4.14	CLOSU	RE PLANNING AND RECLAMATION	76
		4.14.1	Mine Closure Plan	76
		4.14.2	Life of Mine	76
		4.14.3	Mine Closure Vision and Objectives	77
		4.14.4	Key Closure Environmental and Social Issues	77
		4.14.5	Mine Closure Consultation and Stakeholder Identification	77
		4.14.1	Progressive Closure and Reclamation	77
	4.15	NON-MI	NERALISED WASTE	79
5	BACI	KGROUN	D ENVIRONMENTAL CONDITIONS & TRIGGER VALUES	80
	5.1	CLIMAT	E	80
		5.1.1	2015 Rainfall in Strickland River Catchment	80
		5.1.2	Hydrological Context	81
		5.1.3	Rainfall Summaries	83
	5.2	HYDRO	LOGY	89
		5.2.1	Strickland River Catchment	89
		5.2.2	SG3 (Compliance site)	90
	5.3	BACKG	ROUND WATER QUALITY AND TVS	91
		5.3.1	Local Sites	91
		5.3.2	Upper and Lower River – Background Water Quality and TVs	101
		5.3.3	Lake Murray and ORWBs – Background Water Quality and TVs	106
	5.4	BACKG	ROUND BENTHIC SEDIMENT QUALITY AND TVS	108
		5.4.1	Local Sites	109
		5.4.2	Upper and Lower River – Background Sediment Quality and TVs	110
		5.4.3	Lake Murray and ORWBs – Background Sediment Quality and TVs	113

	5.5	BACKG	ROUND TISSUE METAL CONCENTRATIONS AND TVs	114
		5.5.1	Upper and Lower River – Background Tissue Metal Concentrations and TVs	115
		5.5.2	Lake Murray and ORWBs – Background Tissue Metal	119
	5.6	BACKG	ROUND AQUATIC BIOLOGY AND IMPACT ASSESSMENT CRITERIA	120
		5.6.1	Fish and Prawns	120
		5.6.2	Macroinvertebrates	122
6	COM	PLIANCE		123
7	RISK	ASSESS	MENT	124
	7.1	HYDROI	LOGY AND ENVIRONMENTAL FLOWS	124
		7.1.1	Waile Creek	124
		7.1.2	Kogai Creek	124
	7.2	SEDIME	NT TRANSPORT AND FATE OF SEDIMENT	125
		7.2.1	Sediment Aggradation and Erosion	129
	7.3	WATER ASSESS	QUALITY, SEDIMENT QUALITY AND TISSUE METALS RISK	133
		7.3.1	Water Quality	133
		7.3.2	Sediment Quality	137
		7.3.3	Tissue Metals	140
		7.3.4	Summary Physical and Chemical Toxicant Risk Assessment	142
	7.4	LOCAL \	WATER SUPPLIES	152
	7.5	WATER-	BASED ACTIVITIES	157
	7.6	FISH AN	ID PRAWN CONSUMPTION	158
	7.7	AIR QUA	ALITY	159
8	IMPA	CT ASSE	SSMENT	160
	8.1	FISH AN	ID PRAWNS	160
		8.1.1	Upper and Lower River	160
		8.1.2	Lake Murray	162
9	DISC	USSION,	CONCLUSIONS AND OVERALL PERFORMANCE	163
10	REC	OMMEND	ATIONS	169
11	REF	ERENCES	3	170
APPEND	OIX A.		BOX PLOTS EXPLAINED	172
APPEND	DIX B.		QA/QC	173
APPEN	DIX C.		BOX PLOTS AND TRENDS OF MINE AREA RUNOFF WATER QUALITY 1994 – 2015	178
APPEN	DIX D.		WATER QUALITY - RISK AND PERFORMANCE ASSESSMENT - DETAILS OF STATISTICAL ANALYSIS AND BOX PLOTS	201
APPENI	OIX E.		SEDIMENT QUALITY – RISK AND PERFORMANCE ASSESSMENT – DETAILS OF STATISTICAL ANALYSIS AND BOX PLOTS	226
APPEND	OIX F.		TISSUE METAL - RISK AND PERFORMANCE ASSESSMENT - DETAILS OF STATISTICAL ANALYSIS & BOX PLOTS	249

List of Tables

Table 1-1 PJV Project Development Summary	4
Table 2-1 Guidelines and standards	11
Table 2-2 Water quality TVs	13
Table 2-3 Risk assessment matrix – water quality	14
Table 2-4 pH TVs	15
Table 2-5 Risk assessment matrix – pH	16
Table 2-6 Sediment quality TVs	17
Table 2-7 Risk assessment matrix – sediment quality	18
Table 2-8 Tissue metal concentration TVs	18
Table 2-9 Risk assessment matrix – tissue metal concentrations	19
Table 2-10 Drinking water, Aquatic recreation, Fish and prawn consumption and Air quality TVs	20
Table 2-11 Risk assessment matrix – drinking water, air quality and river profiles	21
Table 2-12 Interpretation of Spearman Rank Test results	22
Table 2-13 Impact assessment matrix – Fish and Prawns	23
Table 3-1 Environmental aspects and monitoring parameters	25
Table 3-2 Receiving environment monitoring parameters	27
Table 3-3 Test sites, applicable reference sites and indicator parameters	30
Table 3-4 Assessment of reference site suitability	31
Table 3-5 Monitoring compliance to plan and data recovery in 2015	32
Table 4-1 Mine production and environmental aspects summary 2015	34
Table 4-2 Areas of cumulative land disturbance and reclamation to December 2015	37
Table 4-3 Total quantities of waste rock placed in each dump 1989 - 2015	39
Table 4-4 Tailings slurry discharge quality 2015 (μg/L except where shown)	52
Table 4-5 Percentage of total metals in tailings in dissolved form (μg/L)	52
Table 4-6 Tailings solids discharge quality 2015 (mg/kg whole sediment)	53
Table 4-7 Trends of tailings quality 2011 - 2015	62
Table 4-8 Summary of incompetent waste rock and tailings disposal tonnages in 2015 and 1989 - 2015	63
Table 4-9 Estimates of particle size distribution of material sampled at erodible dump toe	64
Table 4-10 Summary of long-term dump mass balance from survey data	65
Table 4-11 Estimate of sediment discharge from erodible dumps and tailings during 2015	65
Table 4-12 Estimated volumes of contact runoff from mine lease areas 2015	69
Table 4-13 Mine contact runoff monitoring sites	69
Table 4-14 Contact Water Quality 2015 median values (μg/L except where shown)	73

rable 4-15 Trends of water quality contact runoil 2011 - 2015 (as tested using Spearman Hank	
Correlation)	74
Table 4-16 Contact Sediment Quality 2015 median values (mg/kg whole fraction)	75
Table 4-17 Species of tree seedlings planted in 2015	78
Table 5-1 Summary of meteorological data recorded at Anawe plant site during 2015	83
Table 5-2 Summary of flows in m ³ /s for riverine stations in 2015	89
Table 5-3 Local site monitoring points	91
Table 5-4 Local Reference Site Water Quality 2015 median values (μg/L except where shown)	92
Table 5-5 Trends of water quality in mine area runoff reference sites 2011 - 2015 as tested by Spearman Rank Correlation	101
Table 5-6 Summarised water quality for upper river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)	103
Table 5-7 Summarised water quality for lower river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)	104
Table 5-8 Trends for water quality at upper river reference sites 2011 - 2015 as determined by Spearman Rank correlation against time	105
Table 5-9 Trends for water quality at lower river reference sites 2011 - 2015 as determined by Spearman Rank correlation against time	106
Table 5-10 Summarised water quality data for Lake Murray and ORWB river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)	107
Table 5-11 Trends for water quality Lake Murray and ORWBs 2011 - 2015 as determined using Spearman Rank Correlation against time	108
Table 5-12 Local Sites Sediment Quality 2015 (mg/kg whole sediment)	109
Table 5-13 Summarised sediment quality data for upper river reference sites for previous 24 months. (mg/kg whole sediment)	110
Table 5-14 Summarised sediment quality data for lower river reference sites for previous 24 months. ANZECC/ARMCANZ (2000) ISQG-Low values are provided for comparison (mg/kg whole sediment)	111
Table 5-15 Trends for sediment quality for upper river determined by Spearman Rank correlation against time (2013 - 2015)	112
Table 5-16 Trends for sediment quality for lower river determined by Spearman Rank correlation against time (2013 - 2015)	112
Table 5-17 Summarised sediment quality data for Lake Murray and ORWBs reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) ISQG-Low values are provided for comparison (mg/kg	
whole sediment)	113

Table 5-18	Trends for sediment quality Lake Murray and ORWBs determined by Spearman Rank correlation against time (2013 - 2015)	114
Table 5-19 S	Summarised tissue metal data for upper river reference sites for previous 24 months (As - Cu), presenting median and 80%ile of data for each site (mg/kg wet wt.)	116
Table 5-20 S	Summarised tissue metal data for upper river reference sites for previous 24 months (Hg - Zn), presenting median and 80%ile of data for each site (mg/kg wet wt.)	116
Table 5-21 S	Summarised tissue metal data for lower river reference sites for previous 24 months (As - Cu), presenting median and 80%ile of data for each site (mg/kg wet wt.)	117
Table 5-22 S	Summarised tissue metal data for lower river reference sites for previous 24 months (Hg - Zn), presenting median and 80%ile of data for each site (mg/kg wet wt.)	117
Table 5-23 1	Frends of metals in fish flesh for upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	118
Table 5-24	Trends of metals in prawn abdomen for upper river reference site 2011 - 2015 determined by Spearman Rank correlation against time	118
Table 5-25 T	Frends of metals in fish flesh at lower river reference site 2011 - 2015 determined by Spearman Rank correlation against time	118
Table 5-26	Trends of metals in prawn abdomen at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	119
Table 5-27 T	Trends of metals in fish flesh at Lake Murray and ORWB reference sites 1999 - 2009 determined by Spearman Rank correlation against time	119
Table 5-28 1	Trends of metals in fish liver at Lake Murray and ORWB reference sites 1997 - 2009 determined by Spearman Rank correlation against time	120
Table 5-29	Frends for fish at upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	121
Table 5-30	Trends for prawns at upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	121
Table 5-31	Trends for fish at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	121
Table 5-32	Trends for prawns at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time	122
Table 5-33	Frends for fish at Lake Murray reference site 1993 - 2009 determined by Spearman Rank correlation against time	122
Table 6-1 Co	ompliance Summary 2015	123
Table 6-2 M	edian water quality at Upper River Test Sites against SG3 permit criteria 2015 (μg/L except where shown)	123
Table 7-1 Ri	ver profiling sites	129
Table 7-2 F	Risk assessment – median water quality results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk (µg/L except where shown)	134
Table 7-3 F	Risk assessment – Median water quality results at lower river test sites in 2015 compared against LwRiv TVs showing which indicators pose low and potential risk (µg/L except where shown)	134

- 2015	elerence and test sites 2011 13	35
Table 7-5 Comparison of trends of water quality at the lower river re 2015	ference and test sites 2011 -	35
Table 7-6 Risk Assessment – Median water quality results at Lake I 2015 compared against LMY and ORWB TVs showin and potential risk (μg/L except where shown)		36
Table 7-7 Comparison of trends of water quality at Lake Murray and sites 2011 - 2015	d ORWB reference and test	36
Table 7-8 Risk Assessment – Median sediment quality results at u compared against UpRiv TVs showing which indicators (mg/kg whole sediment)	• •	37
Table 7-9 Risk Assessment – Median sediment quality results at least compared against LwRiv TVs showing which indicators (mg/kg whole sediment)		37
Table 7-10 Comparison of trends of sediment quality at upper riv 2011 - 2015 (whole sediment)	ver reference and test sites	38
Table 7-11 Comparison of trends of sediment quality at lower river r - 2015 (whole sediment)	eference and test sites 2011	38
Table 7-12 Risk assessment – median sediment quality results at L sites in 2015 compared against LMY and ORWB TV pose low and potential risk (mg/kg WAE whole sediment	s showing which indicators	39
Table 7-13 Comparison of trends of sediment quality at Lake Murra test sites 2011 - 2015 (whole sediment)	y and ORWB reference and	40
Table 7-14 Risk assessment – median tissue metal results at up compared against UpRiv TVs showing which indicators (mg/kg wet wt.)	•	40
Table 7-15 Risk assessment – median tissue metal results at lo compared against LwRiv TVs showing which indicators (mg/kg wet wt.)		41
Table 7-16 Comparison of tissue metal trends at upper river ref and	test sites 2011 - 2015 14	41
Table 7-17 Comparison of tissue metal trends at lower river ref and	test sites 2011 - 2015 14	41
Table 7-18 Average proportion of total sediment fine sediment (a lower rivers and Lake Murray and ORWBs	<63µm) in the upper rivers,	44
Table 7-19 Summary of mine discharge water quality compared receiving environment water quality risk assessment r discharge and test sites that pose potential risk to the (μg/L except where shown)	esults, showing indicators in	49
Table 7-20 Summary of mine discharge sediment quality compared receiving environment sediment quality risk assessment in discharge and test sites that pose low and potential environment 2015 (mg/kg whole sediment)	nt results, showing indicators	50

Table 7-21	Summary of receiving environment water quality, sediment quality and tissue metals risk assessment results, showing indicators at test sites that pose low and potential risk to the receiving environment 2015	151
Table 7-22	Sampling sites for Local Village Water Supplies 2015	152
Table 7-23	Physiochemical and biological water quality at drinking water sites against PNG Raw Drinking Water Quality Standard 2015	155
Table 7-24	Metal concentrations at drinking water sites against PNG Raw Drinking Water Quality Standard 2015 (ug/L)	156
Table 7-25	Comparison of 2015 median receiving water quality values with recreational exposure guidelines ($\mu g/L$)	157
Table 7-26	Risk assessment – median tissue metal results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk (mg/kg wet wt.)	158
Table 7-27	Point source emission metal concentrations 2015 (mg/m³)	159
Table 8-1 lı	mpact assessment – based on the trend of the annual median of biological indicators at upper river test sites relative to the trend of the annual median of biological indicators at upper river reference sites from 2011 - 2015 using Spearman Rank Test.	160
Table 8-2 lı	mpact assessment – based on the trend of the annual median of biological indicators at lower river test sites relative to the trend of the annual median of biological indicators at lower river reference sites from 2011 - 2015 using Spearman Rank Test.	161
Table 8-3 lı	mpact assessment – based on the trend of the annual median of biological indicators at Lake Murray and ORWB test sites relative to the trend of the annual median of biological indicators at Lake Murray and ORWB reference sites from 1993 - 2009 using Spearman Rank Test.	162
Table 9-1	Forms of metals in mine discharges and their behavior within the receiving environment	164
Table 9-2 S	Summary of potential environmental risks	167

List of Figures

Figure 1-1 Location of Porgera Operation	1
Figure 1-2 Process flow chart	7
Figure 2-1 ANZECC/ARMCANZ Risk Assessment Framework (ANZECC/ARMCANZ Fig 3.3.1)	9
Figure 2-2 Risk assessment matrix – water quality	14
Figure 2-3 Risk assessment matrix – pH	15
Figure 2-4 Risk assessment matrix – sediment quality	17
Figure 2-5 Risk assessment matrix – tissue metal concentrations	19
Figure 3-1 Receiving environment monitoring sites	28
Figure 3-2 Lake Murray monitoring locations	29
Figure 4-1 Monthly and cumulative ore processed in 2015	35
Figure 4-2 Yearly and cumulative ore processed 1990 - 2015	35
Figure 4-3 Monthly and cumulative gold production in 2015	36
Figure 4-4 Yearly and cumulative gold production 1990 - 2015	36
Figure 4-5 Water use efficiency 2009 - 2015	37
Figure 4-6 Special mining lease and leases for mining purposes boundaries	38
Figure 4-7 Monthly tonnages of competent waste rock placed at Kogai Dump in 2015	40
Figure 4-8 Yearly tonnages of competent waste rock placed at Kogai Dump 1989 - 2015	40
Figure 4-9 Monthly tonnages of competent waste rock placed at Anawe North Dump in 2015	41
Figure 4-10 Yearly tonnages of competent waste rock placed at Anawe Nth Dump 2001 - 2015	41
Figure 4-11 Monthly tonnages of spoil placed at Anawe Erodible Dump in 2015	42
Figure 4-12 Yearly tonnages of spoil placed at Anawe Erodible Dump July 1989 - 2015	43
Figure 4-13 Area and volume of Anawe Erodible Dump based on LiDAR survey 2001 - 2015	43
Figure 4-14 Monthly tonnages of spoil placed at Anjolek Erodible Dump in 2015	44
Figure 4-15 Yearly tonnages of spoil placed at Anjolek Erodible Dump 1992 - 2015	44
Figure 4-16 Area and volume of Anjolek Erodible Dump based on LiDAR survey 2001 - 2015	45
Figure 4-17 Anawe looking downstream showing eroded and concave surface profile	46
Figure 4-18 Anawe looking upstream showing runout from Anawe North Stable Dump	46
Figure 4-19 Upper tract of Anjolek where aggradation has occurred	47
Figure 4-20 Central tract of Anjolek showing surface drainage	48
Figure 4-21 2015 Monthly and cumulative tailings discharge volumes (Mm ³)	48
Figure 4-22 2015 Monthly and cumulative tailings discharge mass (Mt)	49
Figure 4-23 Annual and cumulative tailings discharge mass (Mt) (dry solids) (1989 - 2015)	49
Figure 4-24 Tailings diverted monthly to underground backfill in 2015	50
Figure 4-25 Monthly TSS in tailings discharge in 2015 (mg/L)	54

Figure 4-26 Annual TSS in tailings discharge 2011 - 2015 (mg/L)	54
Figure 4-27 Monthly pH in tailings discharge in 2015	54
Figure 4-28 Annual pH in tailings discharge 2011 - 2015	54
Figure 4-29 pH in tailings discharge 1994 - 2015	55
Figure 4-30 Monthly WAD-CN concentration in tailings discharge in 2015 (mg/L)	55
Figure 4-31 Annual WAD CN concentration in tailings discharge 2011 - 2015 (mg/L)	55
Figure 4-32 WAD CN in tailings discharge 1994 - 2015	56
Figure 4-33 Monthly dissolved and total silver concentrations in tailings 2015 ($\mu g/L$)	56
Figure 4-34 Annual dissolved and total silver concentrations in tailings 1994 - 2015 ($\mu g/L$)	56
Figure 4-35 Monthly dissolved and total arsenic concentrations in tailings 2015 ($\mu g/L$)	57
Figure 4-36 Annual dissolved and total arsenic concentrations in tailings 2011 - 2015 ($\mu g/L$)	57
Figure 4-37 Monthly dissolved and total cadmium concentrations in tailings 2015 ($\mu g/L$)	57
Figure 4-38 Annual dissolved and total cadmium concentrations in tailings 2011 - 2015 ($\mu g/L$)	57
Figure 4-39 Monthly dissolved and total chromium concentrations in tailings 2015 ($\mu g/L$)	58
Figure 4-40 Annual dissolved and total chromium concentrations in tailings 2011 - 2015 ($\mu g/L$)	58
Figure 4-41 Monthly dissolved and total copper concentrations in tailings 2015 ($\mu g/L$)	58
Figure 4-42 Annual dissolved and total copper concentrations in tailings 2011 - 2015 ($\mu g/L$)	58
Figure 4-43 Monthly dissolved and total iron concentrations in tailings 2015 ($\mu g/L$)	59
Figure 4-44 Annual dissolved and total iron concentrations in tailings 2011 - 2015 ($\mu g/L$)	59
Figure 4-45 Monthly dissolved and total mercury concentrations in tailings 2015 ($\mu g/L$)	59
Figure 4-46 Annual dissolved and total mercury concentrations in tailings 2011 - 2015 ($\mu g/L$)	59
Figure 4-47 Monthly dissolved and total nickel concentrations in tailings 2015 ($\mu g/L$)	60
Figure 4-48 Annual dissolved and total nickel concentrations in tailings 2011 - 2015 ($\mu g/L$)	60
Figure 4-49 Monthly dissolved and total lead concentrations in tailings 2015 ($\mu g/L$)	60
Figure 4-50 Annual dissolved and total lead concentrations in tailings 2011 - 2015 ($\mu g/L$)	60
Figure 4-51 Monthly dissolved and total selenium concentration in tailings 2015 ($\mu g/L$)	61
Figure 4-52 Annual dissolved and total selenium concentrations in tailings discharge 2011 -	
2015 (μg/L)	61
Figure 4-53 Monthly dissolved and total zinc concentrations in tailings 2015 (μg/L)	61
Figure 4-54 Annual dissolved and total zinc concentrations in tailings 2011 - 2015 (μg/L)	61
Figure 4-55 Production of incompetent rock and tailings 1989 - 2015	63
Figure 4-56 Total annual discharge volumes of treated sewage for 2015	66
Figure 4-57 Average monthly TSS concentration in treated sewage discharge in 2015	67
Figure 4-58 Average monthly BOD ₅ concentration in treated sewage discharge in 2015	67
Figure 4-59 Average monthly faecal coliform count in treated sewage discharge 2015	67
Figure 4-60 Average monthly total hydrocarbon concentrations in OWS discharges 2015	68

Figure 4-61 Mine contact runoff sampling location	71
Figure 4-62 Energy efficiency 2009 - 2015	76
Figure 4-63 Non-mineralised waste production by type	79
Figure 5-1 Comparison of annual rainfall (2015 data versus long term means) at sites in the Strickland Catchment	e 81
Figure 5-2 Residual mass plots Anawe rainfall station data	82
Figure 5-3 Anawe rainfall, SOI and PDO indices on 10-y moving average	82
Figure 5-4 Monthly rainfall at Anawe Plant Site during 2015 compared to long-term monthly means	/ 83
Figure 5-5 Comparison of annual rainfall at Anawe Plant Site with long-term mean 1974 - 2015	84
Figure 5-6 Rainfall at Open Pit during 2015 compared to long-term monthly means	84
Figure 5-7 Annual rainfall at Open Pit 1988 - 2015	85
Figure 5-8 Rainfall at Waile Dam during 2015 compared to long-term monthly means	85
Figure 5-9 Rainfall at Suyan Camp during 2015 compared to long-term monthly means	86
Figure 5-10 Rainfall at SG2 during 2015 compared to long-term monthly means	86
Figure 5-11 Rainfall at Ok Om during 2015 compared to long-term monthly means	87
Figure 5-12 Rainfall at SG3 during 2015 compared to long-term monthly means	87
Figure 5-13 Rainfall at SG4 during 2015 compared to long-term monthly means	88
Figure 5-14 Rainfall at SG5 during 2015 compared to long-term monthly means	88
Figure 5-15 Comparison of annual specific yield for main river gauging stations	89
Figure 5-16 Mean annual flow volumes for the main river gauging stations in 2015	90
Figure 5-17 Total daily flow (GL) at SG3 for 2015	90
Figure 5-18 Total monthly flow (GL) at SG3 during 2015 compared to long-term monthly means	91
Figure 5-19 pH in local creek runoff 2015	93
Figure 5-20 pH in local creek runoff 2011 - 2015	93
Figure 5-21 Sulfate in local creek runoff 2015	93
Figure 5-22 Sulfate in local creek runoff 2011 - 2015	93
Figure 5-23 Alkalinity in local creek runoff 2015	94
Figure 5-24 Alkalinity in local creek runoff 2011 - 2015	94
Figure 5-25 TSS in local creek runoff 2015	94
Figure 5-26 TSS in local creek runoff 2011 - 2015	94
Figure 5-27 Dissolved and total silver in local creek runoff 2015	95
Figure 5-28 Dissolved and total silver in local creek runoff 2011 - 2015	95
Figure 5-29 Dissolved and total arsenic in local creek runoff 2015	95
Figure 5-30 Dissolved and total arsenic in local creek runoff 2011 - 2015	95
Figure 5-31 Dissolved and total cadmium in local creek runoff 2015	96
Figure 5-32 Dissolved and total cadmium in local creek runoff 2011 - 2015	96

Figure 5-33 Dissolved and total chromium in local creek runoff 2015	96
Figure 5-34 Dissolved and total chromium in local creek runoff 2011 - 2015	96
Figure 5-35 Dissolved and total copper in local creek runoff 2015	97
Figure 5-36 Dissolved and total copper in local creek runoff 2011 - 2015	97
Figure 5-37 Dissolved and total iron in local creek runoff 2015	97
Figure 5-38 Dissolved and total iron in local creek runoff 2011 - 2015	97
Figure 5-39 Dissolved and total mercury in local creek runoff 2015	98
Figure 5-40 Dissolved and total mercury in local creek runoff 2011 - 2015	98
Figure 5-41 Dissolved and total nickel in local creek runoff 2015	98
Figure 5-42 Dissolved and total nickel in local creek runoff 2011 - 2015	98
Figure 5-43 Dissolved and total lead in local creek runoff 2015	99
Figure 5-44 Dissolved and total lead in local creek runoff 2011 - 2015	99
Figure 5-45 Dissolved and total selenium in local creek runoff 2015	99
Figure 5-46 Dissolved and total selenium in local creek runoff 2011 - 2015	99
Figure 5-47 Dissolved and total zinc in local creek runoff 2015	100
Figure 5-48 Dissolved and total zinc in local creek runoff 2011 - 2015	100
Figure 7-1 Daily flow duration curve (estimated) for Waile Creek Dam overtopping	124
Figure 7-2 Daily flow duration curves for Kogai Creek	124
Figure 7-3 Mean monthly TSS and flow at SG3 for 2015	126
Figure 7-4 Estimated mean monthly suspended sediment loads for SG3 (Mt)	126
Figure 7-5 Estimated monthly suspended sediment load (black bars) with 3-month moving average at SG3 for full record (red solid line)	127
Figure 7-6 Historical average TSS 1990 - 2015	127
Figure 7-7 Suspended sediment budget at SG3 since 1991	128
Figure 7-8 Relative contribution of natural and mine-derived suspended sediment at SG3 (%)	129
Figure 7-9 Profile comparison (2011 - 2015) at Kaiya River downstream of Kogai Creek Confluence	130
Figure 7-10 Profile comparison (2011 - 2015) for Kaiya River upstream of Yuyan Bridge	130
Figure 7-11 Profile comparison (2009 - 2015) for Kaiya River downstream of Yuyan Bridge	131
Figure 7-12 Time series of minimum bed elevations along the Kaiya River	131
Figure 7-13 Profile comparison (2001 - 2015) at Lagaip River at SG2	131
Figure 7-14 Profile comparison (2000 - 2015) at Profile 10	132
Figure 7-15 Sampling sites for local village water supplies	154
Figure 11-1 Cadmium in prawn cephalothorax upper river test sites	257
Figure 11-2 Chromium in fish flesh upper river test sites	257
Figure 11-3 Cadmium in prawn cephalothorax upper river test sites	257
Figure 11-4 Chromium in fish flesh upper river test sites	257

LIST OF ABBREVIATIONS

AER: Annual Environment Report.

ANSTO: Australian Nuclear Science and Technology Organisation.

ANZECC/ARMCANZ: Australian and New Zealand Environment and Conservation Council and the Agricultural and Resource Management Council of Australia and New Zealand.

ANZFA: Australia New Zealand Food Authority.

Baseline data: Also called pre-operational data (studies); collected (undertaken) before development begins (ANZECC/ARMCANZ 2000). Note that alluvial and small scale mining had been conducted in the Porgera Valley prior to collection of PJV baseline data, however the data were collected prior to beginning construction and operation of the PJV project.

BOD₅: 5-day Biological Oxygen Demand.

CIL: Carbon-in-leach.

CIP: Carbon-in-pulp.

CN: Cyanide.

CO₂-e: Carbon dioxide equivalents.

Competent waste rock: Hard and durable rock with high shear strength, capable of supporting terrestrial waste rock dump construction.

CV-AAS: Cold vapour atomic absorption spectrometry.

Dissolved metals: Operationally defined as passing a very fine $(0.45 \mu m)$ membrane filter, contains a bioavailable fraction capable of being metabolised by organisms.

EL: Exploration Lease.

EMS: Environmental Management System.

ENSO: El Nino Southern Oscillation.

Environmental aspect: Activities that have the potential to interact with the environment (ISO 14001).

Environmental impact: A statistically significant adverse change in the ecosystem health of the receiving environment as a result of the operation's environmental aspects.

Environmental risk: The potential for adverse effects on living organisms associated with pollution of the environment by effluents, emissions, wastes, or accidental chemical releases, energy use, or the depletion of natural resources. (U.S. Environmental Protection Agency definition).

Erodible/incompetent waste rock: Waste rock with low shear strength, not capable of supporting terrestrial waste rock dump construction.

Erodible waste rock dump: Designed to temporarily store incompetent waste rock in a river valley while allowing the dump to gradually and progressively fail and some material to be eroded and transported downstream by the river system.

GELs: Generally Expected Levels.

ICP-MS: Inductively coupled plasma mass spectrometry.

ISO14001: International Organisation for Standardisation Environmental standard for Management Systems.

ISQG: Interim Sediment Quality Guidelines.

KPI: Key Performance Indicator.

LMP: Lease for Mining Purposes.

LOM: Life of Mine.

LOR: Limit of Reporting.

ME: Mining Easement.

NMI: National Measurement Institute.

NOEC: No Observable Effects Concentration.

ORWBs: Off-river Water Bodies.

PDO: Pacific Decadal Oscillation.

PLOA: Porgera Land Owner Association.

PNG: Papua New Guinea.

QA/QC: Quality Assurance and Quality Control.

Reference site: Sites within an ecosystem that are similar to and in the vicinity of the test site ecosystem, but are outside of the zone of potential influence of the operations environmental aspects.

SAG: Semi-autogenous Grinding.

SML: Special Mining Lease.

SOP: Standard Operating Procedure.

TARP: Trigger Action Response Plan.

Test site: Those sites at which the influence of the operations environmental aspects may occur.

Total metals: The concentration of metals determined from an unfiltered sample after vigorous digestion, or the sum of the concentrations of metals in the dissolved and suspended fractions. (APHA definition).

TSM: Test Site Median.

TSS: Total Suspended Solids.

TV: Trigger Value.

WAD-CN: Weak Acid Dissociable Cyanide.

WAE: Weak Acid Extractable.

WWCB: West Wall Cut-back.

1 INTRODUCTION

The PJV Gold Mine is located in the Porgera Valley of Enga province in the Papua New Guinea highlands, approximately 630km NW of Port Moresby (Figure 1-1). The operation consists of an open cut and underground mine, processing facility, gas fired power station, competent and erodible waste rock dumps, a water supply dam, limestone quarry, lime plant, waste management infrastructure and buildings. Production commenced in 1990 and is expected to continue until 2027 at an annual rate of approximately 500 koz of gold per annum. The site employs approximately 2700 local, national and expatriate staff and contractors.

Figure 1-1 Location of Porgera Operation

PJV has a number of unique economic, social and environmental aspects. The environmental aspects are managed in accordance with the sites Environmental Management System (EMS), which is certified to the ISO14001 international standard for EMS. The objectives of the EMS are to ensure methodical, consistent and effective control of the sites environmental aspects so as to ensure compliance with legal and other requirements, mitigate potential environmental risks and continually improve environmental performance.

A fundamental element of the EMS is the environmental monitoring and reporting program. The program provides feedback on the effectiveness of the EMS for achieving the stated objectives and therefore allows the operation to confirm which management techniques are working well, and more importantly identify those which require attention to improve effectiveness.

The purposes of this Annual Environment Report (AER) are to provide an assessment of the overall environmental performance of the operation throughout the previous calendar year, and to assess trends in performance throughout the previous five calendar years. The objectives of this report are thereby aligned with those of the EMS and are to assess:

- 1. Compliance with legal and other requirements;
- 2. The level of potential and actual environmental impact; and
- 3. The environmental performance of the operation.

The first section of the AER describes background environmental conditions by quantifying the natural, non-mine related conditions and changes within the receiving environment. Next the operation's environmental aspects (activities which interact with the environment) are identified and quantified. Then, assessments are made of compliance, mine-related risk, impact and performance, followed by a discussion of the findings and finally, recommendations for improving the environmental management system and the monitoring and reporting program.

Legal and other requirements are imposed predominantly by the two environmental permits issued to the mine by the Papua New Guinea Conservation and Environmental Protection Authority (CEPA). Compliance assessment is performed by comparing monitoring data against the conditions of the permits.

The methodology for risk and impact assessment has been developed by PJV in accordance with international guidelines and in consultation with external technical experts.

The risk assessment stage is based on the comparison of physical and chemical environmental indicators at those sites potentially impacted by the mine (test sites) against risk assessment criteria or trigger values derived from baseline data, reference sites and international guidelines. This step provides an indication of which sites may be potentially impacted as a result of mine aspects.

The impact assessment stage is based on the comparison of biological environmental indicators at test sites against biological indicators at reference sites. When the performance of biological indicator values at the test site is below that of the reference site, it indicates that environmental impact is potentially occurring (i.e. species diversity at a test site lower than at the reference site). If the same performance of biological indicators is observed at both the test site and the reference site then it indicates no potential impact is detected or there is a system-wide change that is not related to the mine.

1.1 Mine Operational History and Description

1.1.1 Staged Development History of the Mine

The Porgera operation was developed in four stages between 1989 and 1996 increasing the nominal processing capacity from 8,500 tonne per day to 17,500 tonne per day. The four stages of project development are described below and summarised in Table 1-1.

Stage 1 construction of the mine commenced in July 1989 and comprised development of an underground mine, ore processing plant and associated infrastructure. The processing plant consisted of a crushing and grinding circuit, a concentrator to recover the gold-bearing sulfide portion of the ore and a cyanidation leach carbon-in-pulp (CIP) circuit. High-grade ore from the underground mine was fed to the mill at a rate of 1,500 tonnes per day (t/day). The sulfide flotation concentrate was direct leached in the CIP circuit, recovering approximately 60% of the contained gold, followed by refining into doré on site. The CIP tailing containing the remaining 40% of the gold was stored in a lined pond

for later reclaim and processing through the pressure oxidation circuit. The barren flotation tailing was discharged into the river system. Stage 1 production commenced in September 1990.

Stage 2 of construction consisted of expanding the underground mine production and installation of the pressure oxidation circuit at the processing plant. The underground mine production was increased by addition of an ore crushing and hoisting system to convey the ore to the surface. In September 1991, commissioning was completed for the pressure oxidation autoclaves for processing the sulphide flotation concentrate and recovery of refractory gold. The sulfide flotation concentrate from the ore feed and the previously stockpiled Stage 1 CIP tailing were processed in the pressure oxidation circuit at 2500 t/day. Gold liberated by pressure oxidation was recovered through the CIP cyanide leach circuit. The tailings neutralisation circuit was commissioned for combining the various processing waste streams (acid wash effluent, cyanidation tailing and flotation tailing) to detoxify and neutralise the tailing before discharge to the river system.

Stage 3 was commissioned in September 1992, with mill throughput increased to 4500 t/day. The underground ore was supplemented with ore from the open pit mine.

Stage 4A of the project commenced in October 1993 and further expanded open pit mining operations and the mill facilities, increasing mill throughput to 8500 t/day.

In 1993, a major review of the project recommended expansion to a nominal capacity of 17,500 t/day for optimisation of mining and ore processing rates. Following the granting of project approvals, this additional expansion, known as Stage 4B, was completed in the first quarter of 1996. Stage 4B involved addition of a second semi-autogenous grinding (SAG) mill and a large ball mill, a 350 t/day oxygen plant, a 150 t/day lime kiln and increased flotation and leaching capacity. Process water storage and the Hides power plant generation capacity, together with other infrastructure also were increased to support this expansion.

The open pit mining fleet capacity was expanded in 1997 from 150,000 to 210,000 t/day to provide for the increase in mill feed rates. Four Knelson concentrators were installed in the same year, to recover free gold ahead of the flotation circuit. In 1999, a further flotation expansion was installed to improve recoveries, and additional oxygen plant capacity was added to increase autoclave throughput.

In 2001, an Acacia reactor was commissioned to treat the Knelson gravity concentrate, and modifications were made to the grinding and CIP circuits. During 2003 a contract secondary crusher was installed to optimise the capacity of the crushing plant and allow a better match between milling and oxidation capacity.

In 2009 a cyanide destruction plant was commissioned to reduce the concentration of cyanide in the tailings discharge and achieve compliance with the International Cyanide Management Code. Two years later in 2011, a paste plant was commissioned for placement of the coarse fraction of tailing in the underground mine as cemented paste backfill. The paste plant has a nominal capacity of 8% of the tailings discharged from the processing plant.

In 2015 a sulfide concentrate plant was commissioned for processing a portion of the high sulfur content flotation concentrate for export to a refinery overseas.

Table 1-1 PJV Project Development Summary

Stage	Period	Ore processing capacity	Comments
1	Jul 1989 – Aug 1991	1,500 t/day	Construction started Jul 1989.
			First production Sept 1990.
			CIP tails stored onsite for processing at a later stage.
			Commenced discharge of flotation tailings to the river system.
2	Sept 1991 - Aug 1991	2,500 t/day	Increased underground mine production.
			Installation of pressure oxidation circuit.
			Installation of tailings neutralisation circuit.
3	Sept 1992 - Sept 1993	4,500 t/day	Underground ore supplemented with ore from the open pit.
4A	Oct 1993 - Mar 1996	8,500 t/day	Expansion of open pit mining.
			Expansion of mill facilities.
4B	Apr 1996 – Present	17,500 t/day	1996 – Addition of a second semi-autogenous grinding mill, ball mill, 350 t/day oxygen plant, 150 t/day lime kiln, increased flotation and leaching capacity, increased water storage, Hides power station capacity and other infrastructure.
			1997 – Increased open pit fleet capacity from 150 to 210 kt/day.
			1999 – Further expansion of flotation circuit and additional oxygen plant.
			2001 – Acacia reactor.
			2003 – Secondary crusher.
			2009 - Cyanide destruction plant, reduces WAD-CN in discharge to <0.2ppm
			2011 – Paste plant, diverts approx 8% tailings volume to the underground mine for backfilling.
			2015 - Sulfide concentrate filtration and export facility, nominal capacity 100t/day

1.1.2 Mining Operations Overview

PJV mining operations consist of open cut and underground operations. Open pit mining is a hard rock operation developed using drill and blast, load and haul techniques. The design utilises 10 m benches, hydraulic face shovels and haul trucks to achieve a nominal material movement capacity in the order of 45 million tonnes per annum.

A particularly challenging aspect to development of the open pit is the inherent instability of the western wall as a result of the presence of brown mudstone and inflow of water to the pit from surrounding catchments. Although mining continues despite the ingress of mud and debris, the ongoing wall failure does pose a risk to workers' safety, equipment and inhibits access to and dilutes ore at the bottom of the open pit. A number of mitigation and stabilisation measures, known collectively as the west wall cutback, are being implemented to stabilise the west wall and prevent the ingress of mud and water to the pit. High grade ore is transported to the crusher and low grade ore is transported to stockpiles for processing at a later date. Waste rock is classified into three categories and managed accordingly.

An underground mine was first operated from 1989 to 1997. The underground mining operation was recommenced in 2002 to extract underground reserves in the central and north zones. The original underground workings were subsequently maintained and developed to provide long-term drainage for the open pit, and to provide access for on-going exploration.

The underground mine is accessed by a portal adjacent to the open pit and mines ore both from outside and beneath the open pit footprint. The underground mining method used is long-hole bench stoping. Ore is recovered by drilling and blasting while retreating along the strike for the full length of the stope. The broken ore is progressively mucked to trucks on the lower level using a combination of conventional, remote and tele-remote control loader operations. Longer stopes are filled in stages with a combination of cemented and non-cemented fills to maintain hanging wall spans.

After mining, open stopes in strategic places are filled with unconsolidated waste rock and cement aggregate and a cement-tailings aggregate, produced from the paste plant, to create crown pillars. The underground mine generates approximately 1 million tonnes of ore per annum. Ore is transported to the crusher, while the majority of waste rock produced from the underground mine is used as backfill to support underground development, the small quantity of waste rock that is brought to surface is stored in one of the competent waste rock dumps with waste from the open pit.

1.1.3 Processing Operations Overview

A flow sheet describing the ore processing operations is shown in Figure 1-2 and begins with run-of-mine ore being delivered by trucks to the crushing and grinding circuit, consisting of a gyratory rock crusher, secondary crusher and two SAG mills.

The SAG mills feed three cyclone packs, a portion of the underflow is sent to four Knelson concentrators to recover free gold, the Knelson concentrate is transferred to an Acacia reactor, an intensive leach reactor located in the gold room at Anawe. The remaining underflow is returned to the ball mills for re-grinding.

Overflow from the cyclone packs contains gold bound to sulfide which is not recoverable by gravity separation. This slurry is transferred via gravity to the Anawe plant site via twin 2 km long pipelines for further processing by flotation concentration, oxidation, Carbon In Pulp / Carbon In Leach (CIP/CIL), electrowinning and smelting.

The flotation circuit consists of rougher, cleaner, and scavenger banks producing a final concentrate of 14% sulfur and tailings. The flotation concentrate is combined with the Acacia reactor tailings and the mixture is reground to 92% passing 38 μ m, pumped to a 35 m diameter concentrate thickener and

then to the concentrate storage tanks that provide approximately six days' worth of production buffer storage between flotation and the oxidation sections. The floatation tailings are sent to the tailings treatment circuit.

Prior to being fed into the autoclaves for oxidation, flotation concentrate is pumped to the carbonate destruction circuit, consisting of a series of three carbonate reaction tanks. Here the concentrate slurry is mixed with an acidic stream of recycled oxidized concentrate from the autoclaves for reaction with the carbonates in the flotation concentrate. This pre-heats the concentrate and reduces the production of carbon dioxide in the autoclaves which otherwise would strip oxygen from the slurry and adversely affect the oxidation rate within the autoclaves.

After carbonate destruction, the concentrate is sent to the four autoclaves. The autoclaves are 4 m diameter, 27 m long, steel pressure vessels that are lined with lead and acid-proof brick and operated at a pressure of 1,750 kPa and a temperature of 198°C. Approximately 98% of the sulphides are oxidised in the autoclave process. Oxidation liberates gold bound to sulfides within the concentrate by oxidising sulfide to form sulphuric acid and subsequently makes any associated gold amenable to recovery by cyanide leaching.

The oxidised concentrate is discharged from the autoclaves via a choke valve into a flash vessel that is equipped with a gas scrubber to control acidic emissions. The sulphuric acid produced in the autoclaves is washed from the oxidised concentrate via two wash thickeners, and the washed and thickened solids are pumped to the CIL circuit. The acidic wash water overflow from the thickener is sent to the tailings treatment circuit. In the CIL circuit activated carbon, slaked lime and sodium cyanide are added to facilitate a process known as cyanidation which results in the formation of gold cyanide complexes which are then adsorbed to the activated carbon. The concentrate is then transferred to the CIP circuit where excess activated carbon is added to adsorb any remaining gold cyanide complexes in the solution.

Next the concentrate is transferred to the elution circuit where the precious metals are stripped from the carbon. After stripping, the barren carbon is regenerated in a rotary kiln and then acid-washed prior to being returned to the CIP circuit. Gold and silver contained in the stripped solution are electrowon in three banks of electrowinning cells which produce concentrated, high density sludge. At regular intervals the sludge is washed from the cells, pressure filtered and retorted to remove any mercury. The residue containing gold and silver is mixed with a flux of borax, soda ash, nitre, and silica, and smelted in an induction furnace to produce 500 oz bars of doré bullion that average about 80% gold. The mercury is condensed and disposed to a licensed facility. The CIP/CIL tailings are sent to the tailings treatment circuit.

Ore processing generates three effluent streams: flotation tailings from the flotation concentrator, acid wash from the wash thickeners downstream of the autoclaves, and CIP/CIL tailings from the cyanidation leach circuit. Treatment involves cyanide destruction and then neutralisation to reduce metal toxicity.

The CIP/CIL tailing is the only stream that contains cyanide, therefore these tails are sent to the cyanide destruction plant prior to being mixed with the other tailings streams for neutralisation. The cyanide destruction plant employs the International Nickel Companies (INCO) sulfur dioxide/air technology, which requires the addition of sodium metabisulfite, lime and copper sulfate and oxidises the cyanide to form less toxic cyanates. The concentration of cyanide is reduced from 80 – 100mg/L WAD-CN in the feed to <0.2mg/L WAD-CN in the discharge. The detoxified CIP/CIL tailing is then sent to the tailings neutralisation circuit for further treatment.

Acid wash water and flotation tailings do not contain cyanide and so are sent directly to the tailings neutralisation circuit. Here they are combined with the CIP/CIL tails and residual naturally occurring carbonates in the flotation tailings neutralise part of the acid and raise the pH of the tailings mixture to

approximately 3.5. Slaked lime then is added to raise the pH and precipitate metals as hydroxides prior to discharge to the Porgera River. The target pH range for discharge is 6.3 – 7.0.

Approximately 8% of the treated tailings is diverted to the paste plant where it is filtered in rotary disc filters, mixed with cement and plasticiser then pumped via a steel pipeline into the underground mine to backfill mined stopes.

Lime for neutralisation purposes is produced from limestone quarried from a deposit 15 km south of the mine. The limestone is processed in two vertical kilns which use either waste oil or diesel as fuel. Quicklime is stored in a silo and trucked to the Anawe plant site and transferred into one of two lime silos. The quicklime is slaked in a lime mill and stored in an agitated tank.

The pyrite concentrate plant is fed by a small portion of the high sulfur grade flotation concentrate from the first bank of flotation rougher cells and is pumped to the slurry filtration plant. The slurry is cycloned to remove fines which are returned to the concentrator for re-grinding and processing through the autoclaves. The coarse fraction from the cyclone is dewatered using a filter press and is then loaded into lined sea containers for export. The sea containers of pyrite concentrate are backloaded onto trucks and transported by road to Lae Port for export to a refinery overseas.

Most of the water for the process plant is supplied by pipeline from the Waile Creek dam 20 km south of the mine site. Additional water is delivered to the Tawisakale grinding circuit from the nearby Kogai Creek.

Electrical power is generated at Hides, 73 km south of the mine site using 9 gas turbines having a combined capacity of 72 MW and delivered to site via a 132 kV transmission line, this is supplemented by a 13 MW diesel power station at the mine site.

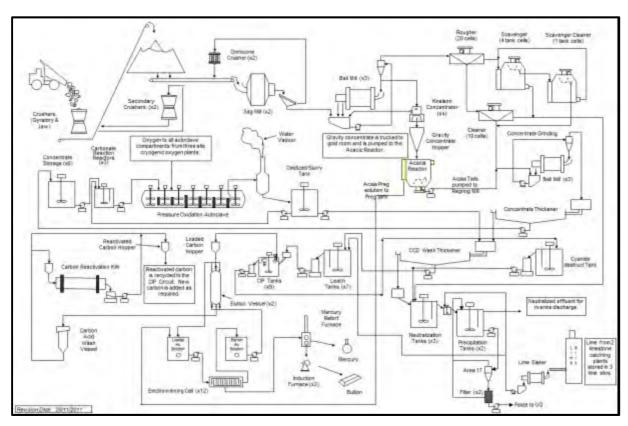


Figure 1-2 Process flow chart

2 AER METHODOLOGY

The PJV AER uses a risk-based framework for assessment and reporting of environmental compliance, risk, impact and performance of the Porgera mine operations and associated infrastructure. The report is structured in accordance with the framework:

- 1. Identify the environmental aspects of the operation (Section 3.1).
- 2. Identify appropriate physical, chemical and biological parameters to serve as indicators of natural or mine-related change within the receiving environment (Section 3.2.1).
- 3. Identify locations within the receiving environment where mine-related environmental impact may occur, known as test sites and identify locations where mine-related environmental impact will not occur, known as reference sites (Section 3.2.2),
- 4. Quantify the environmental aspects of the mine operation that have the potential to interact with the environment (Section 4).
- 5. Describe the natural or background environmental conditions and establish trigger values for each indicator parameter (Section 5).
- 6. Assess compliance against legal requirements (Section 6).
- 7. Perform risk assessment to determine the potential that mine-related environmental impact has or is occurring (Section 7).
- 8. Perform impact assessment to confirm whether mine-related environmental impact has or is occurring (Section 8).
- 9. Discuss findings, draw conclusions and make a determination of the operations overall environmental performance (Section 9).
- 10. Make recommendations for improving environmental performance and the environmental monitoring program (Section10).

2.1 Risk Assessment Methodology

The purpose of the risk assessment stage is to determine the potential or likelihood that mine-related environmental impact has occurred or is occurring within the receiving environment. The risk assessment is based on a comparison of physical and chemical indicators, measured either in discharge from the site or at test sites within the receiving environment, against trigger values (TVs).

If the levels of physical or chemical indicators in discharge or within the receiving environment exceed the TV, it indicates a risk that impact may have or may be occurring. Exceedence then triggers further and more detailed environmental impact assessment to determine whether impact has or is actually occurring.

Impact assessment requires a holistic and detailed investigation of ecosystem function based on the interactions between chemical and physical parameters and biological functions within the environment. Risk assessment based on physical and chemical parameters is typically less complicated, less time consuming and less costly than an impact assessment and can therefore be conducted at a higher frequency and over a greater spatial and temporal range. An appropriately designed and executed monitoring program based on physical and chemical indicators provides a robust and economic basis for assessing risk and triggering the application of impact assessment.

The PJV AER risk assessment framework has been developed in accordance with the Australian and New Zealand Environment Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ 2000) framework. It should be noted that while the ANZECC/ARMCANZ guidelines have been developed specifically for use in assessing risk and managing environmental values associated with water resources, PJV considers it an appropriate model for assessing risks to all environmental values through the development of appropriate TVs.

The ANZECC/ARMCANZ (2000) framework is presented in Figure 2-1.

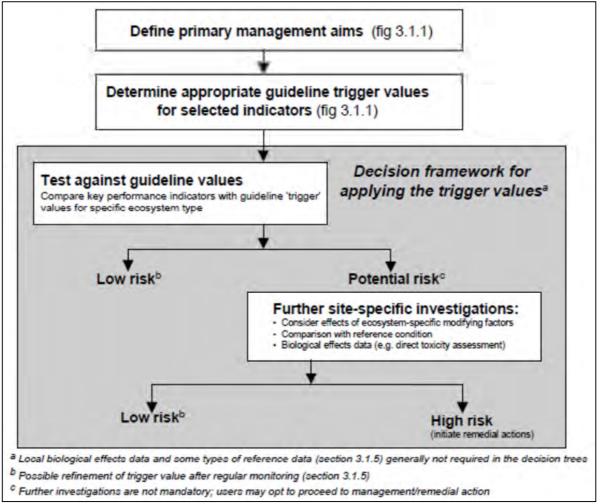


Figure 2-1 ANZECC/ARMCANZ Risk Assessment Framework (ANZECC/ARMCANZ Fig 3.3.1)

2.2 Establishing TVs

ANZECC/ARMCANZ (2000) nominates the following order of preference when establishing TVs for physical and chemical indicators:

2.2.1 TVs derived from ecological effects data

For low-risk TVs, measure the statistical distribution of water quality indicators either at a specific site (preferred), or an appropriate reference system(s), and also study the ecological and biological effects of physical and chemical stressors. Then define the TV as the level of key physical or chemical stressors below which ecologically or biologically meaningful changes do not occur (ANZECC/ARMCANZ 2000 Section 3.3.2.4).

Developing valid TVs using this method requires identifying a suitable reference site and highly controlled experimental conditions to produce well-correlated physical, chemical and biological data, consequently this method is rarely adopted. PJV has not attempted to develop TVs using this method.

2.2.2 TVs derived from baseline or regional reference site data

Where there is insufficient information on ecological effects to determine an acceptable change from reference condition, the use of an appropriate percentile of the reference data distribution can be used to derive the trigger value (ANZECC/ARMCANZ 2000 Section 3.3.2.4). Reference data are gained from either baseline data or from regional reference data.

Baseline data are gathered from the test site prior to disturbance and provide the best comparison of pre and post-disturbance conditions. Baseline data are available for Porgera Mine test sites and their use in deriving TVs is discussed further in Section 2.2.4. Note that alluvial and small scale mining had been conducted in the Porgera Valley prior to collection of PJV baseline data, however the data were collected prior to beginning construction and operation of the PJV project.

Regional reference data are gathered from sites that are similar to and in the vicinity of the test site, but which are not affected by the mining operation. Reference sites should be selected from the same biogeographic and climatic region, should have similar geology, soil types and topography, and should contain a range of habitats similar to those at the test site (ANZECC/ARMCANZ 2000 Section 3.1.4.1).

The suitability of regional reference site data for establishing TVs is influenced by how well the reference sites reflect the pre-disturbance condition of the test site. If the pre-disturbance condition of the regional reference site and test site are different, then TVs based on reference data are unlikely to act as an accurate basis for assessment of mine-related change and therefore risk at the test site. Variation between regional reference site and test site conditions is usually more pronounced in regions where mining projects occur due to naturally elevated mineralisation in the test site catchment. In general, ecosystems in reference sites adjacent to mining projects have evolved with lower levels of natural mineralization in water and stream sediment than those at the test site prior to disturbance.

Identification of PJV reference sites and an assessment of their suitability are presented in Table 3-3 and Table 3-4 respectively. A comparison of baseline and reference data is presented in Section 5. The assessment shows that the suitability of PJV reference sites as analogues for the test sites is generally fair to poor. When compared to baseline data from the test sites, reference site data exhibit lower TSS, lower pH and lower concentrations of metals in water, sediment, fish flesh and prawn flesh than baseline test site conditions.

ANZECC/ARMCANZ (2000) recommends that the derivation of TVs from baseline or reference site data should be based on at least two years (24 months) of monthly monitoring data.

The TV is the percentile value (i.e 80%ile or 20%ile) derived from the baseline or reference site data that represents the degree of excursion that is permitted at the test site before triggering some action (ANZECC/ARMCANZ 2000 Section 3.3.2.6). The 80%ile and 20%ile are deemed to be approximately equivalent to \pm one standard deviation around the median, and it is argued that this level of change is unlikely to result in risk of disturbance to the ecosystem (ANZECC/ARMCANZ 2000). This approach has been adopted widely in Australia for monitoring wetlands and rivers, and assessing ecological health (see Fukuda and Townsend 2006, Storey *et al.* 2007).

The preferred protocol is to compare the median of monthly samples from a test site over the previous 1 year (12 months), being the test site median (TSM), with the TV. Statistically, the median represents the most robust descriptor of the test site data.

Inherent in the use of 80%ile or 20%ile values is the fact that monitoring data may exceed the TV at least 20% of the time. Therefore, a statistical test is required to determine if the exceedance is statistically significant, rather than an artifact of variability within the dataset itself, and thus providing a

greater level of confidence in the risk assessment result. PJV has adopted Wilcoxons test, a non-parametric rank test, to support the comparison of the TV with the TSM and thereby statistically determine if the TSM is significantly higher, lower or not significantly different from the TV. Further description of the statistical test used in the AER is provided in Section 2.7.

2.2.3 Adopting TVs provided by guidelines

In cases where ecological effects data, baseline data and reference site data are unavailable or unsuitable, default TVs provided by guidelines and standards can be adopted to support the risk assessment. Guidelines and standards are typically developed by governments, industry or subject matter experts based on available evidence and a precautionary risk-based approach. They provide guidance on levels of physical and chemical indicators at discharge points or within the receiving environment, below which there is a low risk of environmental impact. In some cases guidelines and standards form part of legislation to protect human health, the economy or the environment.

A summary of adopted guidelines and standards for each environmental value is presented in Table 2-1.

Table 2-1 Guidelines and standards

Risk	Indicator	Guideline
Aquatic	Water quality	ANZECC/ARMCANZ (2000)
ecosystem health	Benthic sediment quality	ANZECC/ARMCANZ (2000)
	Tissue metal	USEPA (2015) – Selenium only
Drinking water	Water quality	PNG Public Health (Drinking Water) Regulation 1984 – Schedule 1 Standards for Raw Water (PNG 1984)
Aquatic recreation	Water quality	ANZECC/ARMCANZ (2000) Guidelines for recreational water quality and aesthetics (Chapter 5)
		PNG Public Health (Drinking Water) Regulation 1984 – Schedule 1 Standards for Raw Water (PNG 1984)
Fish and prawn consumption	Tissue metal	As – Australia New Zealand Food Standards Code – Standard 1.4.1 – Contaminants and natural toxicants (ANZFS 2016)
		Cd, Hg, Pb – European Food Safety Authority (EC 2006)
		Cr – Hong Kong Food Adulteration (Metallic Contamination) Regulations (HK 1997)
		Cu, Se, Zn – Food Standards Australia New Zealand GEL for Metal Contaminants 90%ile (ANZFA 2001)
Air quality	Emission quality	NSW Protection of the Environment Operations (Clean Air) Regulation 2010 (NSW 2010)
		Victoria State Environment Protection Policy (Air Quality Management) 2001 (VIC 2001)

2.2.4 Establishing locally-derived TVs by comparing baseline and reference site data with guidelines and adopting the most relevant

Locally-derived TVs are recommended for the situation where biological effects data are not available and where the baseline or reference data are unsuitable or consistently exceed the guideline TV.

The locally-derived TV is established by firstly comparing the TVs derived from baseline data, reference site data and the guideline or standard TV, and then adopting whichever is highest.

Where the baseline or reference site TV is higher than the guideline TV, it indicates that predisturbance levels of those indicators are naturally higher than the dataset upon which the guideline TVs are derived. Adopting the higher value derived from baseline or reference data accounts for naturally elevated levels of the particular indicator, while still providing a limit to the acceptable level of change at the test site. Adopting the lower guideline value as the TV would be likely to result in frequent exceedance of the TV as a result of natural inputs, and would therefore decrease its effectiveness for distinguishing between mine and non-mine related risk.

In cases where the guideline level is higher than the baseline or reference TV, it indicates that predisturbance levels of those indicators are naturally lower than the dataset upon which the guideline TVs are derived. Adopting the higher guideline TV provides a prudent basis upon which to allow a level of change at the test site, above that which would be provided by the baseline or reference TV, while still providing confidence that the environmental values are being protected.

The risk assessment is then performed by comparing the TSM from monthly data collected at the test site over the previous year (12 months) with the TV using a statistical test.

Based on the lack of biological effects data, elevated levels of some indicators in baseline data and the low suitability of the reference sites, PJV has elected to adopt this method for deriving TVs. Further details are provided in Sections 2.3 through 2.7. The comparison between baseline, reference and guideline data for water quality, sediment quality and tissue metal is shown in Section 5.

2.3 Water Quality TVs and Risk Assessment Matrices

2.3.1 TVs for parameters other than pH

Water quality TVs for all parameters except pH have been established by comparing the 80%ile value from baseline data, the 80%ile value from the most recent 24-months regional reference site data and the respective ANZECC/ARMCANZ (2000) default guideline for 95% species protection, and then adopting the highest of the three values as the TV.

The ANZECC/ARMCANZ (2000) guidelines are intended to provide government, industry, consultants and community groups with a sound set of tools that will enable the assessment and management of ambient water quality in a wide range of water resource types, and according to designated environmental values. They are the recommended limits to acceptable change in water quality that will continue to protect the associated environmental values. They are not mandatory and have no formal legal status. They also do not signify threshold levels of pollution since there is no certainty that significant impacts will occur above these recommended limits, as might be required for prosecution in a court of law. Instead, the guidelines provide certainty that there will be no significant impact on water resources values if the guidelines are not exceeded. (AZECC/ARMCANZ 2000 Section 1.3)

ANZECC/ARMCANZ (2000) default TVs for physical parameters have been derived from the statistical distribution of reference data collected within five geographical regions across Australia and New Zealand (ANZECC/ARMCANZ 2000, Section 3.3.2.5).

Most of the ANZECC/ARMCANZ (2000) default trigger values for chemical parameters (referred to by ANZECC/ARMCANZ (2000) as toxicants) have been derived from single-species toxicity tests on a range of species, because these formed the bulk of the concentration-response information. High reliability trigger values were calculated from chronic 'no observable effect concentration' tests (NOEC). However, the majority of trigger values are described as moderate reliability trigger values, derived from short-term acute toxicity data (from tests ≤96 h duration) by applying acute-to-chronic conversion factors (ANZECC/ARMCANZ 2000, Section 3.4.2.1).

The ANZECC/ARMCANZ (2000) default trigger values derived using the statistical species sensitivity distribution method were calculated at four different protection levels, 99%, 95%, 90% and 80%. Here, protection levels signify the percentage of species expected to be protected at different concentrations of the toxicant (ANZECC/ARMCANZ 2000, Section 3.4.2.4). The 95% species protection level is most commonly used in monitoring programs.

The guideline trigger values were derived primarily according to risk assessment principles, using data from laboratory tests in clean water. They represent the best current estimates of the concentrations of chemicals that should have no significant adverse effects on the aquatic ecosystem (ANZECC/ARMCANZ 2000, Section 3.4.3).

TVs for metals are based on dissolved metal concentrations as it is the dissolved fraction that are bioavailable and therefore have the potential to cause a toxic effect. Where applicable, the ANZECC/ARMCANZ (2000) default guidelines for 95% species protection have been hardness-modified prior to comparison with the baseline and reference site data in accordance with Section 3.3.4.2 of ANZECC/ARMCANZ (2000). Hardness modification is done separately for the upper river, lower river, Lake Murray and ORWBs, and conservatively uses the 20%ile hardness value from all test sites within each of the respective groups. Adoption of the 20%ile value is considered a conservative approach as it assumes low buffering capacity throughout the entire year, and calculating a specific hardness modified trigger value for each of the different regions will account for the different hardness within the upper river, lower river, Lake Murray and off-river water bodies (ORWBs) such as oxbow lakes.

The comparison between baseline data, reference site data and the ANZECC/ARMCANZ (2000) default guidelines for 95% species protection in the upper river, lower river, Lake Murray and ORWBs are presented in Section 5.3.

A summary of the TV development method is provided in Table 2-2 and the decision matrix is shown in and Table 2-3.

Table 2-2 Water quality TVs

Indicator Parameter	Trigger Value (TV) Derivation
Water Quality:	Adopt whichever is higher:
Physical and chemical stressors (except pH) and toxicants	 - Baseline 80%ile (full data set) - Regional reference site 80%ile (most recent 24-month data set), or - ANZECC/ARMCANZ default guideline for 95% species protection (hardness modified where appropriate)

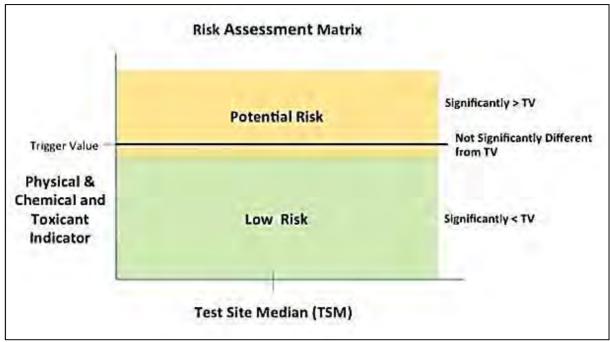


Figure 2-2 Risk assessment matrix - water quality

Table 2-3 Risk assessment matrix - water quality

Assessment Result	Risk Rating	Action
TSM significantly > TV	Potential Risk	Confirm whether impact has or is occurring by
TSM not significantly different from TV		conducting an impact
And TV, TSM and TSM data set not all ≤ LOR.		assessment based on biological indicators.
TSM not significantly different from TV	Low Risk	
And TV, TSM and TSM data set all ≤ LOR.		
TSM significantly < TV		

Significance = statistical significance with a probability threshold of P = 0.05

2.3.2 TVs for pH

Upper and lower TVs for pH in the upper river were established by comparing the 80%ile and 20%ile test site baseline data, and the reference site values from the most recent 24-month data with the ANZECC/ARMCANZ (2000) upper and lower limit respectively for pH for upland rivers in tropical Australia.

Upper and lower TVs for pH in the lower river and Lake Murray and ORWBs were established by comparing the 80%ile and 20%ile Lake Murray baseline data and the North Lake Murray reference site values from the most recent 24-month data with the ANZECC/ARMCANZ (2000) upper and lower limit respectively for pH for lowland rivers in tropical Australia.

Comparisons between upper river baseline data, reference site data and the ANZECC/ARMCANZ (2000) default guidelines for upland rivers in Tropical Australia are presented in Section 5.3.

Comparisons between test site baseline data, lower river reference site data and the ANZECC/ARMCANZ (2000) default guidelines for lowland rivers in Tropical Australia are presented in Section 5.3.

A summary of the TV development method is provided in Table 2-4, and the decision matrix is shown in Figure 2-3 and Table 2-5.

Table 2-4 pH TVs

Indicator Parameter	Trigger Value (TV) Derivation	
Water:	Adopt whichever is higher:	
pH – upper	- Baseline 80%ile (full data set)	
	- Regional reference 80%ile (most recent 24months data set), or	
	- ANZECC/ARMCANZ upper limit for upland rivers in tropical Australia	
Water:	Adopt whichever is lower:	
pH – lower	- Baseline 20%ile (full data set)	
	- Regional reference 20%ile (most recent 24months data set), or	
	- ANZECC/ARMCANZ lower limit for upland rivers in tropical Australia	

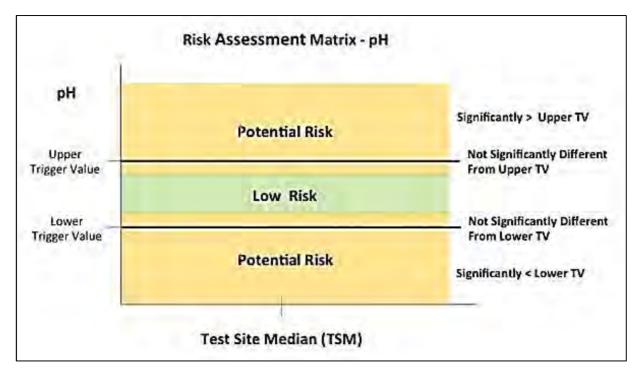


Figure 2-3 Risk assessment matrix – pH

Table 2-5 Risk assessment matrix - pH

Assessment Result	Risk Rating	Action
TSM significantly > Upper TV	Potential Risk	Confirm whether impact
TSM not significantly different from Upper TV		has or is occurring by conducting an impact
TSM significantly < Upper TV	Low Risk	assessment based on biological indicators.
TSM significantly > Lower TV		
TSM not significantly different from Lower TV	Potential Risk	
TSM significantly < Lower TV		

Significance = statistical significance with a probability threshold of P = 0.05

2.4 Sediment Quality TVs and Risk Assessment Matrix

Sediment quality data from the reference sites were compared against the ANZECC/ARMCANZ (2000) interim sediment quality guidelines (ISQGs). These guidelines were developed from United States effects databases (Long et al. 1995) and are termed 'interim' because an understanding of the biological impacts from sediment contamination is still being developed (Batley and Simpson 2008). The guidelines include ISQG-Low and ISQG-High values, which represent the 10th percentile (10%ile) and 50th percentile (50%ile) values for chemical concentrations associated with acute toxicity effects respectively.

The ISQG-Low value is the default TV below which the frequency of adverse biological effects is expected to be very low, and if exceeded, should trigger further study. The ISQG-High value corresponds to the median effect concentration as detailed in Long et al. (1995), and indicates the concentration above which adverse biological effects are expected to occur (ANZECC/ARMCANZ 2000).

The weak acid extractable (WAE) fraction from the whole of sediment sample is used to represent the bioavailable fraction of metals that may cause a toxic effect, and therefore the WAE results for whole sediment are used to derived TVs and to compare against ANZECC/ARMCANZ (2000) ISQG.

Baseline sediment quality conditions were not sampled at river test sites. Baseline conditions were sampled at Lake Murray, but the samples were analysed only for total extractable metals not weak acid extractable metals and are therefore not comparable with reference data or the ANZECC/ARMCANZ (2000) ISQG.

TVs for sediment quality for all parameters except selenium (Se) have been established by comparing the WAE whole sediment 80%ile value from the most recent 24-month reference site data against the ANZECC/ARMCANZ (2000) interim sediment quality low guideline value (ISQG-low), and adopting whichever is higher.

ANZECC/ARMCANZ (2000) does not provide sediment quality TVs for selenium, therefore the TV for selenium has been established from the most recent 24-month 80%ile from the reference data set.

Similar to water quality, the lack of suitable reference sites, particularly due to the presence of natural mineralization in the test site catchment, means that TVs based on the reference site data alone are likely to be overly conservative. Comparisons between the upper river, the lower river and Lake

Murray and ORWB reference site data and the ANZECC/ARMCANZ (2000) ISQG-low are presented in Section 5.

Also similar to water quality, it should be noted that in cases where the TV, the TSM and the entire test site data set upon which the TSM is based are less than the analytical limit of reporting (LOR), Wilcoxons test will find the TSM not significantly different from the TV which infers a potential risk of environmental impact. However, in these cases given that the data set from the test site indicates that the concentration of a particular parameter does not have the potential to exceed the TV, and the TV, the TSM and the TSM data set are equal to the LOR, it is considered appropriate to conclude there is low risk of potential impact rather than potential risk of environment impact. This scenario is captured in the risk assessment matrices.

A summary of the TV development method is provided in Table 2-6 and the decision matrix is shown in Figure 2-4 and Table 2-7.

Table 2-6 Sediment quality TVs

Indicator Parameter	Trigger Value (TV) Derivation
Sediment Quality	Adopt whichever is higher:
	- Reference site 80%ile WAE in whole sediment (most recent 24months data set), or
	- ANZECC/ARMCANZ (2000) ISQG-low

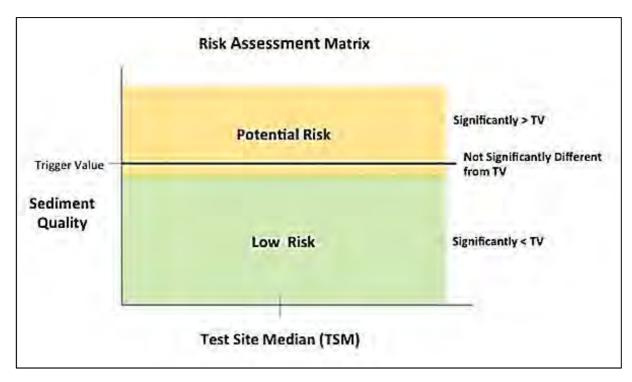


Figure 2-4 Risk assessment matrix – sediment quality

Table 2-7 Risk assessment matrix – sediment quality

Assessment Result	Risk Rating	Action
TSM significantly > TV	Potential Risk	Confirm whether impact has or is occurring by
TSM not significantly different from TV		conducting an impact
And TV, TSM and TSM data set not all ≤ LOR.		assessment based on biological indicators.
TSM not significantly different from TV	Low Risk	
And TV, TSM and TSM data set all ≤ LOR.		
TSM significantly < TV		

Significance = statistical significance with a probability threshold of P = 0.05

2.4.1 Tissue Metal TVs and Risk Assessment Matrix

Pre-disturbance baseline data are available for river and Lake Murray test sites, but only for fish flesh tissue samples. TVs for tissue metal concentrations in fish and prawns for all parameters, except selenium in fish flesh, have been established by comparing the reference site 80%ile value from the most recent 24-month data against the 80%ile of the test site baseline data and adopting the higher value. This method has been selected in the absence of any suitable effects based guidelines for use as a comparison against reference site data, and is considered conservative due to the lack of natural mineralization within the reference site catchments. However, it should be noted that reference site data could be elevated as a result of fish/prawns migrating upstream from test sites to the reference sites.

The trigger value for selenium in fish flesh has been established by comparing the reference site 80%ile value from the most recent 24-month data, the 80%ile of the test site baseline data and the United States Environmental Protection Agency draft tissue metal criterion for protection of aquatic life (USEPA 2015). Although still in draft form, this is the best available toxic effects based criterion for fish tissue and is therefore deemed appropriate for use.

A summary of the TV development method is provided in Table 2-8 and the decision matrix is shown in Figure 2-5 and Table 2-9.

Table 2-8 Tissue metal concentration TVs

Indicator Parameter	Trigger Value (TV) Derivation
	Adopt whichever is highest:
and prawn flesh	- Baseline 80%ile (full data set)
	- Reference site 80%ile (most recent 24 months), or
	- USEPA criterion (available for Selenium (Se) only)

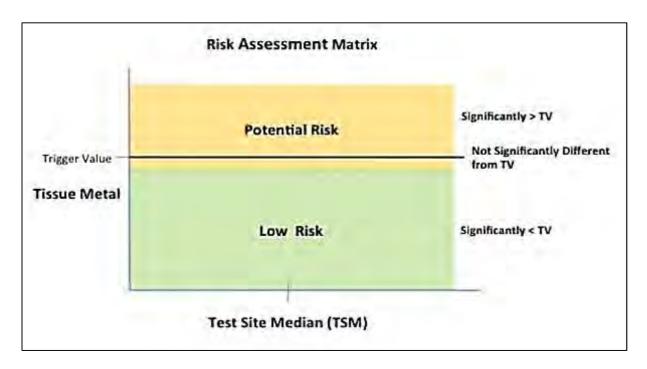


Figure 2-5 Risk assessment matrix – tissue metal concentrations

Table 2-9 Risk assessment matrix – tissue metal concentrations

Assessment Result	Risk Rating	Action
TSM significantly > TV	Potential Risk	Confirm whether impact has or is occurring by
TSM not significantly different from TV		conducting an impact
And TV, TSM and TSM data set not all ≤ LOR.		assessment based on biological indicators.
TSM not significantly different from TV	Low Risk	
And TV, TSM and TSM data set all ≤ LOR.		
TSM significantly < Trigger Value		

Significance = statistical significance with a probability threshold of P = 0.05

2.5 Drinking Water, Aquatic Recreation, Fish and Prawn Consumption, Air Quality

PJV has adopted the PNG Public Health (Drinking Water) Regulation 1984 – Schedule 1 Standards for Raw Water as the default risk assessment TVs for drinking water quality. The risk assessment is based on the comparison of guideline values with results of water quality sampling conducted at village water supplies around the special mining lease (SML). The results of the drinking water risk assessment are presented in Section 7.4.

Water-based activities involve contact with water, in PJVs context this includes gold panning, swimming, washing or fishing by communities downstream of the mine. In general there are two kinds of exposure pathways associated with these activities: dermal contact with the water body and ingestion of the water. PJV has adopted the ANZECC/ARMCANZ (2000) recreational water quality guidelines as TVs to support the risk assessment. The ANZECC/ARMCANZ (2000) guidelines are

based on the assumption that no more than 100mL of water is ingested during the recreational activity. The results of the risk assessment are presented in Section 7.5.

Human consumption of fish and prawns has the potential to transfer toxicants from the flesh of the animal to humans. The PJV risk assessment is based on a comparison of metal concentrations in the flesh of fish and prawns downstream of the mine against recommended levels from a range of international food standards. Where more than one recommended limit is provided by multiple documents, the lower value has been adopted. The results of the fish and prawn consumption risk assessment are presented in Section 7.6.

PNG has not enacted air quality legislation, therefore PJV has adopted the NSW Protection of the Environment Operations (Clean Air) Regulation 2010 and the Victoria State Environment Protection Policy (Air Quality Management) 2001 as risk assessment TVs for emissions from stationary sources. The results of the air quality risk assessment are presented in Section 7.7.

Table 2-10 Drinking water, Aquatic recreation, Fish and prawn consumption and Air quality TVs

Indicator Parameter	Risk Assessment Trigger Value (TV) Derivation
Drinking water: Water quality – village water supplies	PNG Public Health (Drinking Water) Regulation 1984 – Schedule 1 Standards for Raw Water (PNG 1984)
Water-based activities: Water quality – receiving environment 2015 TSM	ANZECC/ARMCANZ (2000) Guidelines for recreational water quality and aesthetics (Chapter 5) PNG Public Health (Drinking Water) Regulation 1984 – Schedule 1 Standards for Raw Water (PNG 1984)
Fish and prawn consumption: Tissue metals – fish and prawns 2015 TSM	As – Australia New Zealand Food Standards Code – Standard 1.4.1 – Contaminants and natural toxicants (ANZFS 2016) Cd, Hg, Pb – European Food Safety Authority (EC 2006) Cr – Hong Kong Food Adulteration (Metallic Contamination) Regulations (HK 1997) Cu, Se, Zn – Food Standards Australia New Zealand GEL for Metal Contaminants 90%ile (ANZFA 2001)
Air quality: Emissions at point source	NSW Protection of the Environment Operations (Clean Air) Regulation 2010 (NSW 2010) Victoria State Environment Protection Policy (Air Quality Management) 2001 (VIC 2001)

Table 2-11 Risk assessment matrix – drinking water, air quality and river profiles

Risk	Assessment Result	Risk Rating	Action
Drinking water	TSM > PNG Drinking Water Guidelines	Potential risk	Conduct health risk assessment
	TSM ≤ PNG Drinking Water Guidelines	Low	NIL
Water-based activities	TSM > Recreation TV	Potential risk	Conduct health risk assessment
	TSM ≤ Recreation TV	Low	NIL
Fish and prawn consumption	TSM > Consumption TV	Potential risk	Conduct health risk assessment
	TSM ≤ Consumption TV	Low	NIL
Air quality – at emission point	TSM > Air Quality Guidelines	Potential risk	Monitor ambient air quality at sensitive receptor
	TSM ≤ Air Quality Guidelines	Low	NIL

2.6 Impact Assessment Methodology

The purpose of the impact assessment stage is to confirm whether actual impact has occurred within the receiving environment, and if so to determine the level or significance of that impact.

It should be noted that although ANZECC/ARMCANZ (2000) recommends further investigation of actual impact in cases where the TV is exceeded, PJV considers it prudent to conduct an assessment of impact to aquatic ecosystems within the receiving environment, regardless of the risk assessment result. This is done to provide confirmation of the risk assessment conclusions and support ongoing refinement of the TVs, and to provide a direct assessment of impact for ongoing performance monitoring and full transparency of the operation's interactions with the environment.

The aquatic ecosystem impact assessment is based on direct assessment of the health of the aquatic ecosystem through the use of biological indicators such as abundance, richness, biomass and condition of aquatic fauna, specifically fish, prawns and macroinvertebrates. The impact assessment is conducted by comparing biological indicators from the test sites against impact assessment criteria.

2.6.1 Fish and Prawns

ANZECC/ARMCANZ (2000) recommends deriving impact assessment criteria in the form of TVs from the most recent 24 months observations of aquatic fauna at the reference site(s). This method is consistent with the approach used for risk assessment based on physical and chemical parameters indicators. However, the regional reference site data set(s) upon which this approach is based must achieve minimum quality requirements in order for the TVs to be valid.

In 2013, initial analysis of the ability of the Porgera data set to support this approach identified issues related to small sample size, high variability, low replication and poor catch rate. Small sample size resulted in low statistical power and poor catch rates resulted in narrow data range within the results,

which ultimately produced TVs with very low values, with sometimes zero catch recorded at reference sites. These issues appeared to relate to a combination of sampling methods used, limitations of habitat availability, sampling difficulties, and naturally low diversity and abundance of fish and prawns. Therefore, it was concluded that the data being used to develop biological TVs using the 24month method were not suitable for supporting robust and accurate impact assessment.

This issue was first identified in the 2013 AER and in response PJV has developed an alternative method for impact assessment using fish and prawn catch data, and in 2014 began a pilot study to investigate the validity of benthic macroinvertebrates as an additional biological indicator.

The alternative approach for impact assessment based on fish and prawn catch data uses the Spearman Rank Test, which was selected as a statistically conservative method of comparing temporal trends in fish and prawn catch data between test and reference sites. The approach involves applying the Spearman Rank Test (the test) to the test site data and then to the reference site data using data from the most recent 5 years. The test is capable of determining whether the given indicator is increasing, decreasing or remaining constant over the monitoring period to a predetermined level of statistical significance, and thereby allows a comparison of the trend at the test sites against that of the reference sites.

It should be noted however, that given the limitations to the data outlined above, the 5-year trend must similarly be treated with caution. Therefore, the results of the Spearman Rank tests are considered suitable for use only as an indicator of potential impact.

The Spearman Rank Test is run using Minitab software and produces a correlation coefficient (Spearman's rho), and a statistical probability (P) for each data set. The results of the Spearman Rank Test are interpreted in accordance with Table 2-12 and the impact assessment is conducted in accordance with the decision matrix presented in Table 2-13.

Table 2-12 Interpretation of Spearman Rank Test results

Indicator Parameter	Spearman's rho sign	Probability (P)	Conclusion about indicator behaviour
Trend of annual	Positive sign (+)	P < 0.05	Significant increase over time
median of fish and	Negative sign (-)	P < 0.05	Significant decrease over time
- Abundance	Either positive or negative	P ≥ 0.05	No significant change over time (i.e. no statistically significant
- Richness			increase or decrease over time)
- Biomass			
- Condition			

Table 2-13 Impact assessment matrix – Fish and Prawns

Indicator Parameter	Reference site	Test Site	Impact Rating
Trend of annual median from 2011 -	No significant change over time	No significant change over time	No potential adverse impact indicated.
2015 using Spearman rank sign and significance for	No significant change over time	Significant increasing trend over time	Trend of annual median at test sites stable or increasing over time
fish and prawn: - Abundance	Significant decreasing trend over time	No significant change over time	relative to reference sites.
- Richness - Biomass	Significant decreasing trend over time	Significant increasing trend over time	
- Condition	Significant decreasing trend over time	Significant decreasing trend over time ¹	
	Significant increasing trend over time	Significant increasing trend over time ¹	
	No significant change over time	Significant decreasing over time	Potential adverse impact indicated.
	Significant increasing trend over time	No significant change over time	Trend of annual median at test sites reducing over time relative reference
	Significant increasing trend over time	Significant decreasing trend over time	sites.

^{1 -} Indicates "system-wide" change and not mine-related, i.e. occurring at the reference sites and test sites

Significance = statistical significance with a probability threshold of P = 0.05

2.6.2 Benthic Macroinvertebrates

Given that the challenges associated with the fish and prawn monitoring program reduce the ability of the impact assessment process to detect change, PJV has investigated the use of additional biological indicators to support the impact assessment stage.

In 2014 a scoping study (WRM 2015) was performed to investigate the suitability of benthic macroinvertebrate populations as indicators of mine-related impact upstream of SG3. The 2014 study supported the use of benthic macroinvertebrates, and monitoring was subsequently repeated in August 2015 and will be performed again in 2016 to provide 3 years of data in order to characterise temporal variability in the macroinvertebrate fauna of reference sites and thereby allow development of more robust trigger values.

Compared to fish and prawns, benthic macroinvertebrate assemblages are more easily sampled, function at a lower spatial scale, are less mobile, and support species with a range in sensitivities to a range of stressors, providing greater ability to detect mine impacts. There is also limited likelihood of fauna moving from test sites to reference sites and transferring a mine impact signature (i.e. elevated tissue metal levels) to reference sites as occurs with fish and prawns. The data therefore benefit from higher sample replication and tend to provide higher catch rates and higher data range and variability

than the fish and prawn sampling. This supports the application of more complex statistical analysis which ultimately increases confidence in the impact assessment results.

The monitoring program was designed around sampling of water and benthic sediment quality, physical habitat descriptors and benthic macroinvertebrate assemblages from test and reference sites between the Porgera Mine and SG3 on the Strickland River. The sites were chosen to allow direct, pairwise comparison of data between the test and the reference sites.

2.7 Testing for Statistical Significance

Tests of statistical significance are performed as part of the risk and impact assessments to provide a statistical basis for drawing conclusions. Using the statistical tests allows the assessment result to be described as 'significantly greater than', 'significantly less than' or 'not significantly different from' the relevant trigger value, and ultimately to provide confidence that the result is valid and not being influenced by the inherent characteristics of the data set under consideration.

The test used for determining statistical significance at the risk assessment stage is the Wilcoxon Signed-rank Test with a probability threshold of P = 0.05. The Wilcoxon test is a non-parametric statistical hypothesis test used when comparing two related samples, which uses the rankings of the data and is independent of the absolute values.

The test used for determining statistical significance of trends over time to support the impact assessment using fish and prawn data is the Spearman Rank Test, with a probability threshold of P = 0.05. This test also uses ranked data, and so is independent of the absolute values, but is ideal for use on data monotonically related, as it is not dependent on data having a linear relationship (as are linear regression or Pearson Product Moment Correlation).

Both tests are performed with the Minitab software package. The procedure for determining significance involves integrating the significance test into the risk and impact assessment matrices. The procedures for testing significance in the risk and impacts assessments for water quality, sediment quality and tissue metals are shown as expanded assessment matrices in Appendix D, E and F respectively.

For macroinvertebrates, a range of univariate and multivariate statistical tests were performed to support the impact assessment using a weight of evidence approach across multiple indices derived from the benthic macroinvertebrate data. The indices include those related to direct taxa richness, but also indices dependent on number of taxa known to be sensitive to a range of pollutants, and also similarity in overall assemblage composition between reference and test sites.

3 THE ENVIRONMENTAL MONITORING PROGRAM

The environmental monitoring program consists of sampling and measurement of physical, chemical and biological variables to quantify the operations environmental aspects, assess compliance, risk and impact. The monitoring program is detailed in the Porgera Environmental Monitoring, Auditing and Reporting Plan (POR ENV PRO 0006) and associated Standard Operating Procedures. The spatial scope of the monitoring program is extensive, spanning from the mine site to SG5 on the lower Strickland River, approximately 560 river km downstream from the mine.

Many of the monitoring locations are in remote areas and require the use of helicopters and boats to gain access. While all efforts are taken to conduct the monitoring program to schedule, potential safety issues will sometimes prevent sampling from being undertaken, such as severe flooding, unsafe access, social unrest, or threats against PJV employees.

3.1 Environmental Aspects

The operation has a range of associated environmental aspects, which are defined by ISO (2004) as activities which have the ability to interact with the environment. Significant environmental aspects are riverine tailings disposal, waste rock disposal, water extraction and discharge, hazardous substances transport, storage and use and waste management.

Each aspect is monitored and quantified to determine the risk it poses to the environmental values of the receiving environment, to determine whether the management techniques applied are effective in achieving the desired level of control and to determine whether actions taken to improve performance are effective. Table 3-1 provides an outline of the operation's environmental aspects and the associated physical and chemical parameters that are monitored to quantify each aspect.

Table 3-1 Environmental aspects and monitoring parameters

Environmental Aspect	Physical Parameters	Chemical Parameters	Biological Parameters
Riverine tailings disposal	Volume discharged, TSS concentration, pH, conductivity	Metal concentrations WAD CN	NA – applied only in receiving environment
Waste rock disposal to water	Volume discharged	Metal concentrations	NA – applied only in receiving environment
Waste rock disposal to land	Area disturbed Volume of waste disposed to land (solid waste and competent waste rock)	Metal concentrations	NA – applied only in receiving environment
Water extraction	Volume extracted	NA	NA – applied only in receiving environment
Discharge to air	Emission rate, particulate concentration	Metal concentrations Greenhouse gas volume	NA – applied only in receiving environment
Land disturbance	Area disturbed % rehabilitated	NA	NA

Environmental Aspect	Physical Parameters	Chemical Parameters	Biological Parameters
Resource consumption	Volume consumed Consumption efficiency	NA	NA
Waste generation	Volume generated % to landfill %incinerated % recycled	Waste type	NA

3.2 Environmental Conditions

To determine the scope and magnitude of the interactions between the operations environmental aspects and the receiving environment, it is necessary to identify suitable parameters to act as indicators of the interaction, to identify locations within the receiving environment at which the interaction is likely to take place (test sites) and to identify locations within the environment where no interaction will take place (reference sites). This will ultimately allow a comparison of the same indicators between the test site and reference site and allow determination of the spatial extent and magnitude of mine related changes within the receiving environment.

3.2.1 Indicator Parameters

The parameters monitored within the receiving environment have been selected based on their suitability for:

- Supporting assessment of compliance against legal and other requirements.
- Assessing the potential impact within the receiving environment as a result of the operations environmental aspects.
- Assessing the environmental performance of the operation, linked to environmental Key Performance Indicators (KPIs).

Table 3-2 outlines the physical, chemical and biological parameters that are monitored at both the test sites and reference sites to support compliance, impact and performance assessments.

Table 3-2 Receiving environment monitoring parameters

Environmental Aspect	Indicator Parameters Physical	Medium and toxicant	Biological
Riverine tailings disposal	River profiling – cross- sections Water quality – TSS concentration, pH, conductivity	Water Quality – Metal concentrations, WAD-CN Stream Sediment Quality – Metal concentration Metal concentrations in fish and prawn tissue	Diversity, richness, biomass and condition of fish and prawns. Macroinvertebrate assemblages.
Waste rock disposal to water	River profiling – cross- sections Water quality – TSS concentration, pH, conductivity	Water Quality – Metal concentrations Stream Sediment Quality – Metal concentration Metal concentrations in fish and prawn tissue	Diversity, richness, biomass and condition of fish and prawns. Macroinvertebrate assemblages.
Waste rock disposal to land	Area of disturbance Volume waste disposed to land (solid waste and competent waste rock)	Geotechnical characteristics – Competency Geochemical characteristics - Metal concentrations, sulfur concentrations	Terrestrial flora and fauna communities.
Water extraction	Flow downstream of water extraction points	NA	Macroinvertebrate communities.
Discharge to air	Particulate concentration	Air Quality - Metal concentration	NA
Land disturbance	Area of disturbance	NA	Terrestrial flora and fauna communities.
Resource consumption	NA	NA	NA
Waste generation	Area of disturbance	NA	Terrestrial flora and fauna communities.

NA - Not Applicable

3.2.2 Monitoring Locations

Environment monitoring locations are categorised as test sites and reference sites. Test sites are those sites downstream of the mine, receiving discharge from the mine, where reference sites are in a similar geographical setting, generally adjacent to the test sites, but not receiving discharge from the mine. The test and reference sites at which receiving environment monitoring is conducted are listed in Table 3-3. The table also lists which reference sites are used as analogues for each test site. The locations of the monitoring sites are shown in Table 3-1 and Figure 3-2 shows monitoring locations within Lake Murray.

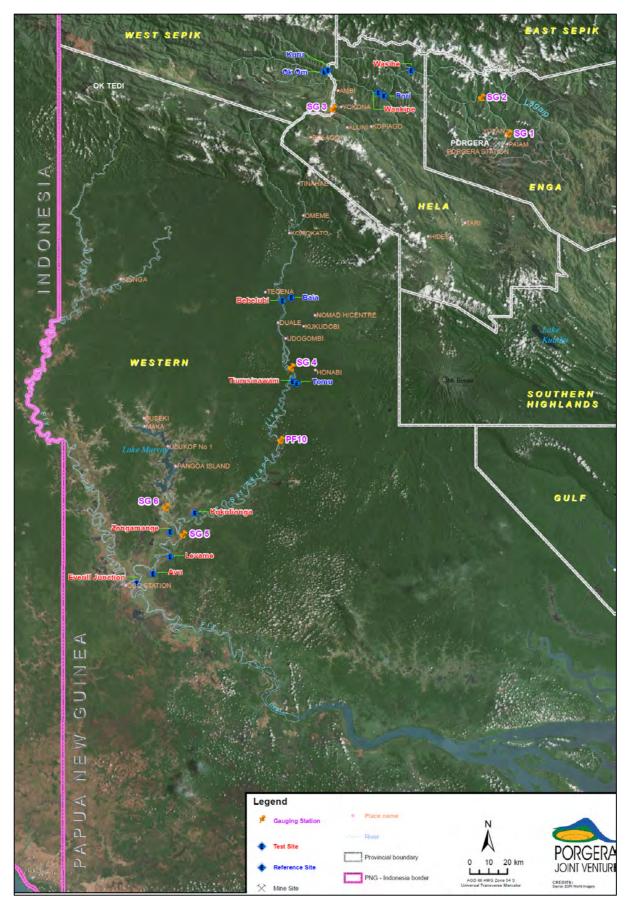


Figure 3-1 Receiving environment monitoring sites

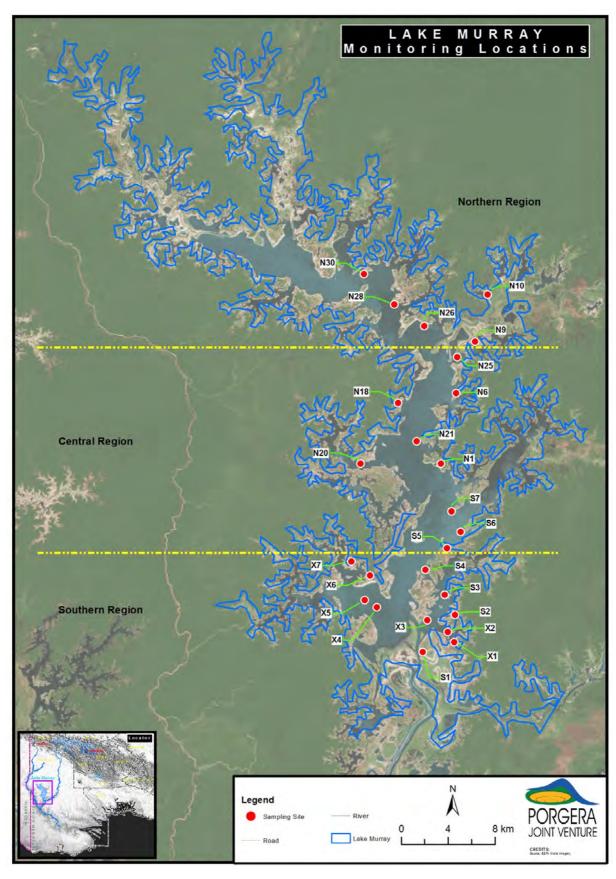


Figure 3-2 Lake Murray monitoring locations

Table 3-3 Test sites, applicable reference sites and indicator parameters

			Reference Sites and Parameters						
Test Site		Profile	Water and Sediment	Tissue Metal	Diversity, Richness and Biomass	Condition			
Upper River	SG1	NAR ¹	Ok Om Kuru Pori	NA ²	NA ²	NA ²			
	SG2	Ok Om	Ok Om Kuru Pori	NA ²	NA ²	NA ²			
	Wasiba	Ok Om	Ok Om Kuru Pori	Ok Om Kuru Pori	Ok Om	Ok Om Kuru Pori			
	Wankipe	Ok Om	Ok Om Kuru Pori	Ok Om Kuru Pori	Ok Om	Ok Om Kuru Pori			
	SG3	Ok Om	Ok Om Kuru Pori	NA ²	NA ²	NA ²			
Lower Strickland River	Bebelubi	NA ²	Baia Tomu	Baia Tomu	Baia Tomu	Baia Tomu			
nivei	Tiumsinawam/SG4	NA ²	Baia Tomu	Baia Tomu	Baia Tomu	Baia Tomu			
	PF10	NAR	NA ²	NA ²	NA ²	NA ²			
	SG5	NAR	Baia Tomu	Baia Tomu	Baia Tomu	Baia Tomu			
	Upstream of Everil Junction	NA ²	Baia Tomu	Baia Tomu	Baia Tomu	Baia Tomu			
Lakes and Off-River Water Bodies	South Lake Murray Central Lake Murray SG6	NA ²	North Lake Murray	North Lake Murray	North Lake Murray	North Lake Murray			
	Kukufionga								
	Zongamange								
	Avu								
	Levame								
Drinking Water	Villages surrounding Porgera Mine	NA ²	NA ³	NA ²	NA ²	NA ²			
Air Quality	Hides Power Station boundary Villages surrounding Porgera Mine	NA ²	NA ³	NA ²	NA ²	NA ²			

¹ NAR – No appropriate reference

²NA – Indicator not applied at monitoring site

³ NA – Indicator at test sites compared against values derived from standards or guidelines not reference sites

Table 3-4 Assessment of reference site suitability

			Suital	oility Assess	sment	
Reference Site Group	Regional Ref Sites	Test Sites	Phys	Chem and Toxicant	Bio	Comments
Upper River	Upper Lagaip	SG1 SG2 Wasiba Wankipe SG3	Good	Poor	Poor	Lower mineralization Naturally depauperate fish and prawn populations Fish and prawns potentially exposed to elevated metals if migrating between test and reference sites.
	Pori		Poor	Poor	Poor	Small tributary Lower mineralization Lower flows Lower suspended sediment Different habitat types Reference site biology potentially indirectly impacted (i.e. fish and prawn migration) Fish and prawns potentially exposed to elevated metals if migrating between test and reference sites.
	Kuru		Fair	Poor	Poor	Small tributary Lower mineralization Lower flows Lower suspended sediment Different habitat types Reference site biology potentially indirectly impacted Fish and prawns potentially exposed to elevated metals if migrating between test and reference sites.
	Ok Om		Good	Poor	Fair	Lower mineralization Fish and prawns potentially exposed to elevated metals if migrating between test and ref sites.

			Suital	bility Assess	sment	
Reference Site Group	Regional Ref Sites	Test Sites	Phys	Chem and Toxicant	Bio	Comments
Lower River	Baia	Bebelubi Tiumsinawam PF10 SG5 Upstream Everil Junction	Fair	Fair	Poor	Medium size tributary Lower mineralization Different habitat types Ref site biology potentially indirectly impacted Fish and prawns potentially exposed to elevated metals if migrating between test and ref sites.
	Tomu		Fair	Fair	Poor	Medium size tributary Lower mineralization Different habitat types Ref site biology potentially indirectly impacted Fish and prawns potentially exposed to elevated metals if migrating between test and ref sites.
Lake Murray	North Lake Murray	Central LM South LM	Good	Good	Good	Nth Lake is potentially impacted.
ORWBs	North Lake Murray	Kukufionga Zongemange Avu Levame	Poor	Poor	Poor	Nth Lake is potentially impacted by mine aspects. Different habitats in Lake and ORWBs. Different biological and biochemical and hydrological processing occurring in ORWBs than in Nth Lake.

3.2.3 Schedule and Execution

Compliance with the monitoring plan is summarised in Table 3-5, overall the monitoring schedule was executed to plan, with some exceptions due to access, safety and equipment damage.

Table 3-5 Monitoring compliance to plan and data recovery in 2015

Discipline	Compliance to Plan (%)
Biology	95
Hydrology	95
Chemistry	95

3.2.4 QA/QC

PJV incorporates a quality assurance and quality control (QA/QC) program into the monitoring and reporting program to ensure the data being reported are accurate, representative and defendable.

The QA/QC program consists of training and competency assessment, equipment calibration, method validation, field blanks, field duplicates, certified reference material, proficiency testing and interlaboratory analysis. Analysis of metals in water, benthic sediment and prawn and fish tissue is performed by the NATA-certified National Measurement Institute laboratory in Sydney, Australia.

The results of the QA/QC program show that sampling and analytical techniques are providing representative and valid results for all water, sediment and tissue metal results. Some contamination of blanks and deviation from the required levels of recovery for duplicates was observed on occasion during the year. However, based on positive field blank, field duplicate and proficiency testing results, the data provided by the monitoring and reporting program, and subsequently presented in this report, are deemed representative and valid.

Opportunities to improve the QA/QC program are:

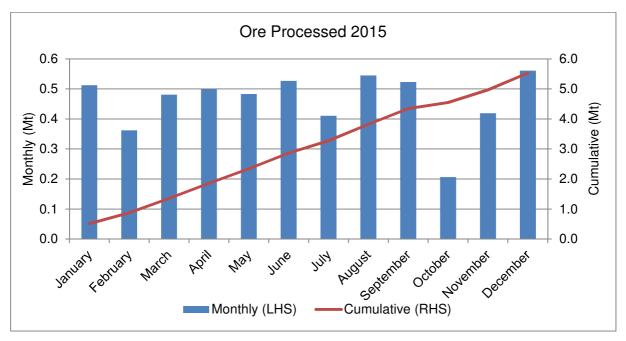
- Completion of training and competency system development and implementation.
- Inclusion of field duplicates and field blanks with each tissue metal batch.
- More timely investigation of poor QA/QC results to allow for corrective action to be taken.

A full review of QA/QC performance is provided in Appendix B.

4 OPERATIONS AND ENVIRONMENTAL ASPECTS

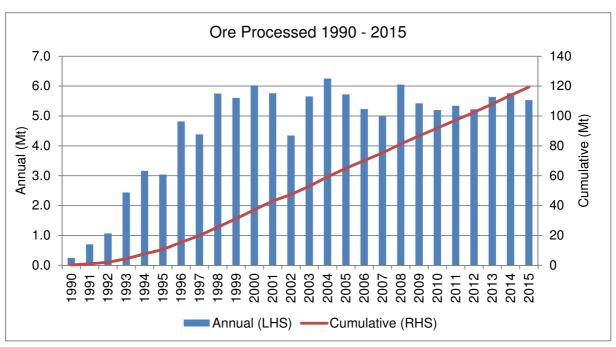
This section provides a summary of key operational parameters and environmental aspects for 2015 and throughout the history of the operation. A summary of results is presented in Table 4-1.

Table 4-1 Mine production and environmental aspects summary 2015


Operational and Environmental Aspects	2015	Life of Mine Total	Comments	
Ore processed (Mt)	5.53	119.37	Consistent with recent years.	
Gold production (oz)	554,094	18,664,435	Met 2015 guidance.	
Competent waste rock produced (Mt)	4.26	419.07	Lower than previous years.	
Incompetent waste rock produced – Anawe (Mt)	3.56	224.05	Consistent with previous years.	
Incompetent waste rock produced – Anjolek (Mt)	9.67	221.95	Significantly higher than recent years due Stage 5C mining.	
Tailings to underground paste (% total tailings volume)	9.7	NA	Record volume diverted in 2015.	
Tailings discharged (Mt)	5.02	116.64	Consistent with recent years.	
Total sediment discharged to river (Mt) (from tailings and erodible dumps)	14.0	NA	Lower than recent years due to lower rainfall, reducing transport.	
Sewage discharge (m³)	259,008	NA	Consistent with recent years.	
Mine contact rainfall runoff (Mm ³)	65,589	NA	Lower than recent years due to lower rainfall.	
Greenhouse gas and energy efficiency (kg CO2-e / t processed ore)	79	NA	2.6% reduced efficiency compared to 2014, negative trend maintained.	
Water use and efficiency (L / t processed ore)	5,166	NA 9.6% increased efficiency compared to 2014.		
Area land disturbed	2330	41% of total leased area is undisturbed.		
Area of disturbed land under rehab	239 ha (10%)	Consistent with recent years.		

4.1 Production

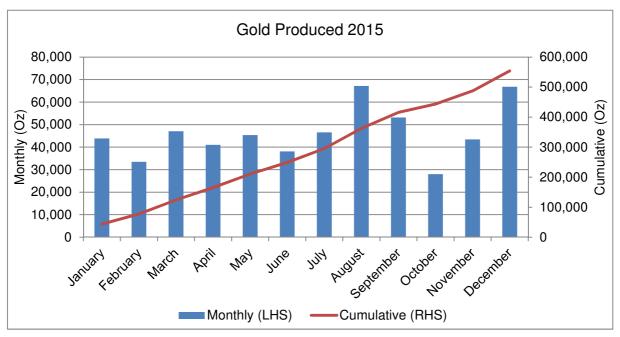
4.1.1 Mining and Processing Operations


4.1.2 Total Ore Processed

The total quantity of ore processed in 2015 was 5.53 million tonnes (Mt). Figure 4-1 shows the monthly and cumulative quantities of ore processed in 2015. The cumulative quantity of ore processed from 1990 to 2015 was 119.4 Mt, Figure 4-2 shows annual and cumulative quantities of processed ore since production began in 1990.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-1 Monthly and cumulative ore processed in 2015



LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-2 Yearly and cumulative ore processed 1990 - 2015

4.1.3 Gold Production

Total gold production in 2015 was 554koz. Figure 4-3 shows monthly and cumulative gold production during 2015. Total gold production from 1990 to 2015 was 19.2 million ounces. Figure 4-4 shows annual and cumulative gold production since operations began in 1990.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-3 Monthly and cumulative gold production in 2015

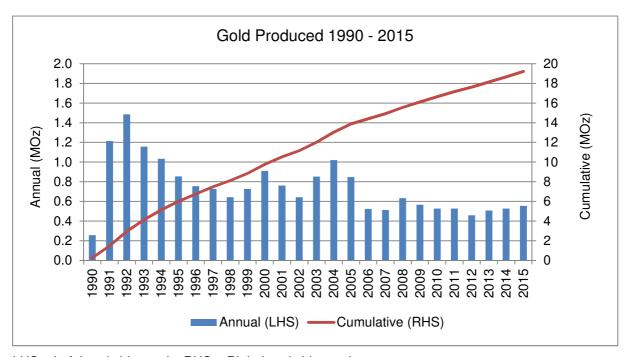


Figure 4-4 Yearly and cumulative gold production 1990 - 2015

4.2 Water Use

Figure 4-5 shows the annual average water use rate per tonne of ore processed. The pressure oxidation of pyrite ore in autoclaves produces sulfuric acid liquor as a by-product which requires significant quantities of water for washing the acidic liquor from the oxidised solids.

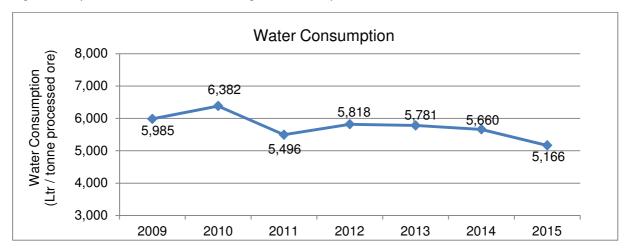


Figure 4-5 Water use efficiency 2009 - 2015

4.3 Land Disturbance

4.3.1 Land Disturbance

Porgera mine holds eight leases with a total area of 3,926.79 ha, the leases are listed in Table 4-2 and are shown in Figure 4-6. The Special Mining Lease (SML) includes the mine and project infrastructure. The other Leases for Mining Purposes (LMP) correspond to land use associated with the mining operation such as waste rock dumps, Suyan accommodation camp, limestone quarry and water supply. The company also maintains Exploration Leases (EL) which surrounds the SML and some key LMPs for ongoing exploration. Mining Easements (ME) are held for utilities such as power transmission lines and water supply pipelines. The EL and ME land areas are not included here.

The total area disturbed by mining and related activities in 2015 was 2,330 ha, equating to approximately 59% of the total leased areas. The total area of disturbance increased by 11.9 ha during 2015, 2.6 ha was due to expansion of the erodible dumps, 0.7 ha due to expansion of the Kogai diversion drain, 0.5 ha was due to expansion at Anawe competent dump, 6.3 ha was due to mining expansion at Open pit and 1.8 ha due to expansion of the Pangalita limestone quarry.

Table 4-2 Areas of cumulative land disturbance and reclamation to December 2015

Lease	Total Lease Area (ha)	Disturbed (ha)	Undisturbed (ha)	Under Progressive Reclamation (ha)
SML	2107	1352	755	239
Kogai LMP	424	193	251	0
Kaiya LMP	602	342	260	0
Anawe North LMP 72	220	113	106	0
Anawe South LMP 77	204	130	74	0
Anawe LMP3	81	81	0.00	0
Suyan LMP	69	45	25	0
Pangalita LMP	135	59	76	0
Waile LMP	85	16	69	0
TOTAL	3927	2330	1616	239 (10.3% of disturbed)

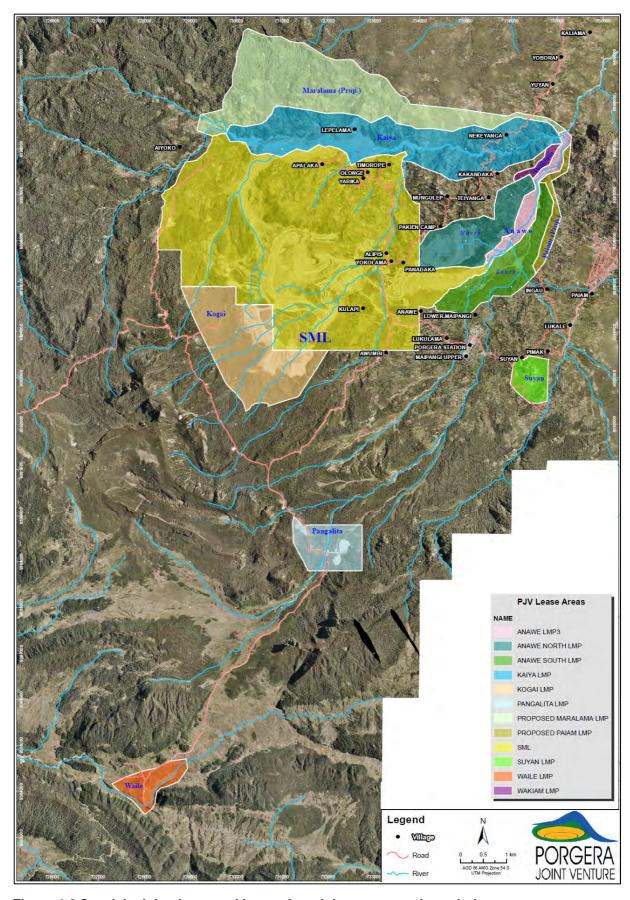


Figure 4-6 Special mining lease and leases for mining purposes boundaries

4.4 Waste Rock Production

The mine generates two types of waste rock with very different physical characteristics. Competent or hard rock has high shear strength and is not prone to weathering, and therefore does not break down into smaller particles after mining. Incompetent waste comprising colluvium and mudstones has low shear strength and is prone to weathering, breaking down rapidly into sand and silt-sized particles on exposure to air and water. Competent rock is selectively mined and stored in engineered waste rock dumps constructed as a series of terraces into the hillside. Incompetent waste rock is placed in erodible dumps that behave similar to and resemble natural landslides in the area.

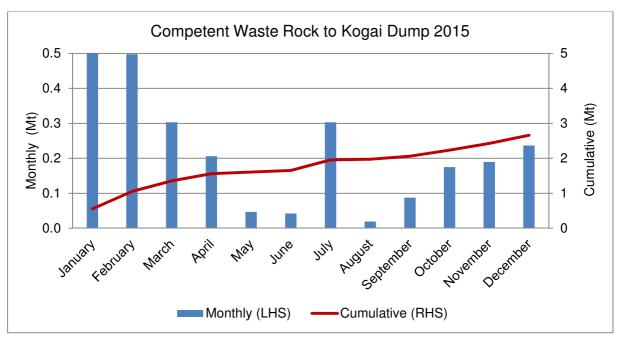

The mass of competent and incompetent waste rock produced and its disposal location between 1989 and 2015 is presented in Table 4-3. The data show that to date, the quantity of competent waste rock placed at Kogai dump is approx twice the total amount placed at Anawe North competent dump since dumping commenced at Anawe in 2001, while similar quantities of incompetent waste rock have been placed in the Anjolek and Anawe erodible dumps.

Table 4-3 Total quantities of waste rock placed in each dump 1989 - 2015

Waste dump	Total Volume (Mt)
Anawe North Competent	134.23
Kogai Competent	284.84
Competent Sub-Total	419.07
Anawe Erodible	224.05
Anjolek Erodible	222.95
Erodible Sub-Total	446.00
TOTAL	865.07

4.4.1 Kogai Competent Dump

The total quantity of competent waste rock placed at the Kogai dump in 2015 was 2.66 million tonnes, Figure 4-7 shows the monthly and cumulative quantities sent to Kogai during 2015. The dump received the competent waste rock mined from Stages 5B and 5C of the Open Pit during the year.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-7 Monthly tonnages of competent waste rock placed at Kogai Dump in 2015

The total quantity of competent waste rock placed at Kogai since 1989 was 284 million tonnes, Figure 4-8 shows the annual and cumulative quantities placed at Kogai since construction of the dump began in 1989. As can be seen from the graph, most of the waste was placed between 1989 and 2001 when mining was being carried out at the upper zones of the open pit.

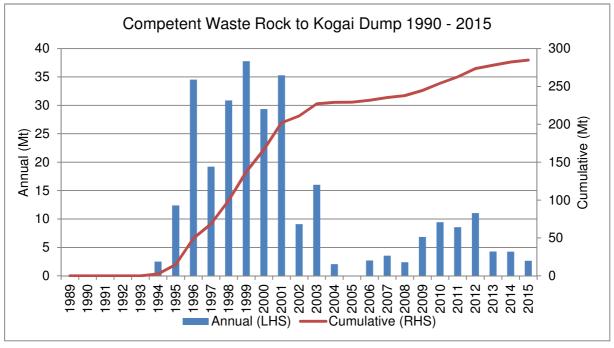
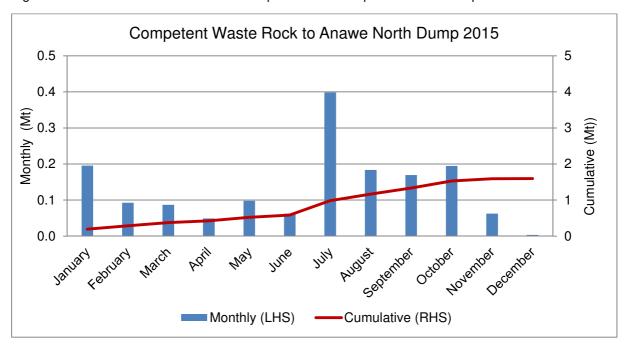



Figure 4-8 Yearly tonnages of competent waste rock placed at Kogai Dump 1989 - 2015

4.4.2 Anawe North Competent Dump

Anawe North received 1.6 Mt of competent waste rock in 2015. Figure 4-9 shows the monthly and cumulative quantities of competent rock placed at Anawe North during 2015. The total quantity of competent waste rock placed at Anawe North dump since construction began in 2001 was 134.2 Mt. Figure 4-10 shows annual and cumulative quantities of competent waste rock placed at Anawe North.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-9 Monthly tonnages of competent waste rock placed at Anawe North Dump in 2015

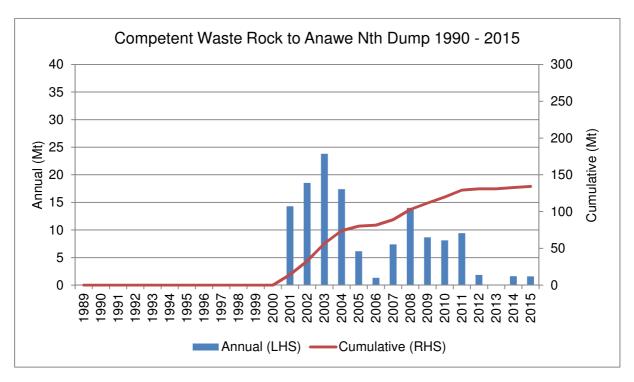


Figure 4-10 Yearly tonnages of competent waste rock placed at Anawe North Dump 2001 - 2015

4.5 Incompetent Waste Rock Disposal

Incompetent waste rock is disposed in either the Anawe or Anjolek erodible dumps. Fluvial processes from rainfall runoff erode unconsolidated waste from the dumps and this is discharged as sediment to the receiving river system. The total quantities of incompetent waste rock placed during 2015 were slightly less than previous years due to decreased mining of incompetent material from the bottom of the open pit.

4.5.1.1 Anawe Erodible Dump

Monthly volumes to Anawe erodible dump in 2015 are shown in Figure 4-11. A total of 3.56 Mt of incompetent waste was placed in Anawe during 2015, the majority of which was mudstone material excavated from the bottom of the open pit. The volume placed was 24% of the annual permit limit of 15.07 Mt. Figure 4-12 shows the annual volumes of spoil placed in the Anawe dump since dumping began there in 1989, Figure 4-13 shows the cumulative surface area and volume of the dump since 2001.

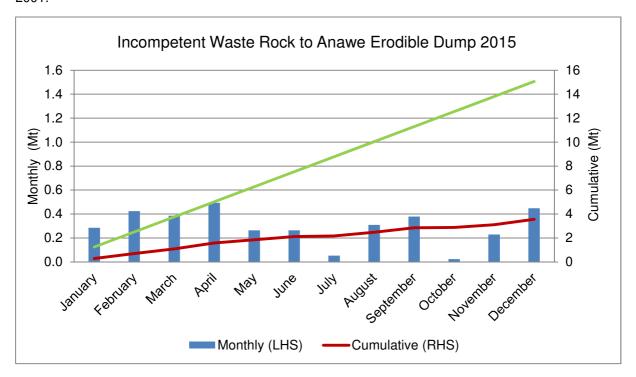


Figure 4-11 Monthly tonnages of spoil placed at Anawe Erodible Dump in 2015

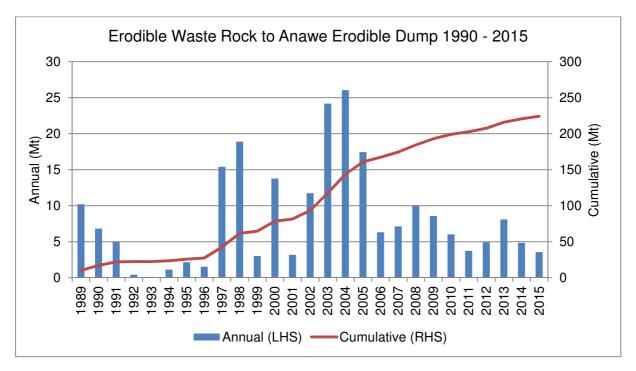


Figure 4-12 Yearly tonnages of spoil placed at Anawe Erodible Dump July 1989 - 2015

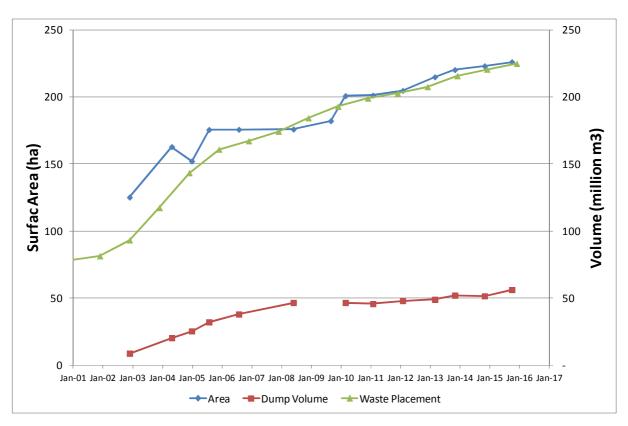
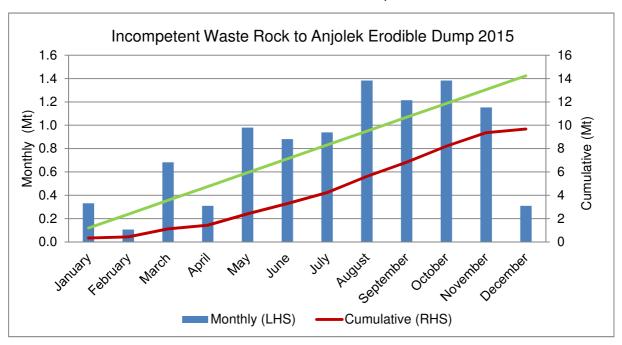



Figure 4-13 Area and volume of Anawe Erodible Dump based on LiDAR survey 2001 - 2015

4.5.1.2 Anjolek Erodible Dump

Figure 4-14 shows monthly volumes to Anjolek dump during 2015. A total of 9.7 Mt was placed during 2015, the majority of which was mudstone from a cut-back of the west wall of the open pit. This was equivalent to 68% of the annual permit limit of 14.23 Mt. The volume dumped in 2015 was significantly higher than previous years due to an increase in mining of the west wall cut-back during 2015. Figure 4-15 shows the volume of spoil placed in the Anjolek dump since dumping began there in 1992, Figure 4-16 shows the cumulative surface area and volume of the dump since 2001.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-14 Monthly tonnages of spoil placed at Anjolek Erodible Dump in 2015

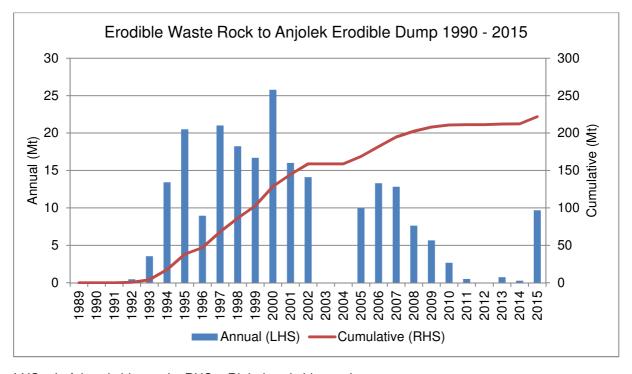


Figure 4-15 Yearly tonnages of spoil placed at Anjolek Erodible Dump 1992 - 2015

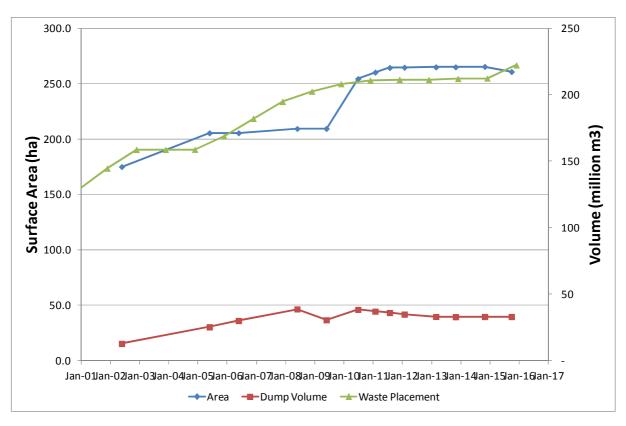


Figure 4-16 Area and volume of Anjolek Erodible Dump based on LiDAR survey 2001 - 2015

4.6 Status of the Erodible Dumps in 2015

4.6.1 Anawe Erodible Dump

An aerial inspection of Anawe Dump conducted in April 2016 showed that there had been no significant changes to the morphology of the dump in comparison with recent year's surveys. The upper part of the dump tract above Pongema River confluence appeared to have degraded/incised and was generally a concave cross section shape. This caused surface drainage (including tailings) to be directed towards the centreline rather than the flanks, see Figure 4-17. Further downstream, adjacent to the Pongema River confluence, the dump depth increased and the surface profile became convex, thus directing/shedding surface flows towards the flanks. There was little noticeable change to the morphology of the Maiapam slide toe as it intersects the southern edge of the dump downslope from Porgera Township, although general lowering of the dump surface in that area had exposed a greater depth of the toe area and this may warrant closer geotechnical inspection. On the north bank opposite the Pongema River confluence, there appeared to be increased sediment runout from Anawe North stable dump, see Figure 4-18. Although sediment runout from the dump had been noted in previous years, a failure of a bench of the dump had recently increased this sediment input. Between Anawe North and the toe, ongoing but minor fluvial erosion of the lower slopes of the northern hillslopes was noted due to the effect of tailings and water flows being confined between these slopes and the north flank of the dump. Similarly at the southern boundary of the dump below the Pongema River confluence, ongoing fluvial erosion of the toes of the natural (Paiam) hillslopes was noted. There appeared to be no significant change to the morphology of the toe area, although a minor landslip near the toe on the southern hillslope was noted.

LiDAR survey data from October 2015 showed that there had been about a 9% increase in dump volume and about a 1% increase in surface area over the last year. While the increase in surface area is consistent with previous year's data, the increase in volume was larger than expected given the amount of waste material dumped. Inputs from Anawe North dump may have contributed to this

volume change as the LiDAR cross section/long section profiles show that generally the 2015 dump surface, and therefore dump volume, increased notably in the lower dump tract below Anawe North. Cross sections also showed that the lateral extent of the dump surface increased most in the lower tract, supporting observations that the dump was 'spreading out' and forcing the northern and southern (Pongema) channels towards the respective hillslopes.

Although not obvious from visual inspections, the survey data showed that the toe area had also thickened compared to previous surveys. The survey data confirms that, overall, the dump outline has increased, mostly below the Pongema River confluence/Anawe North intersection, and that the toe had advanced.

Figure 4-17 Anawe looking downstream showing eroded and concave surface profile

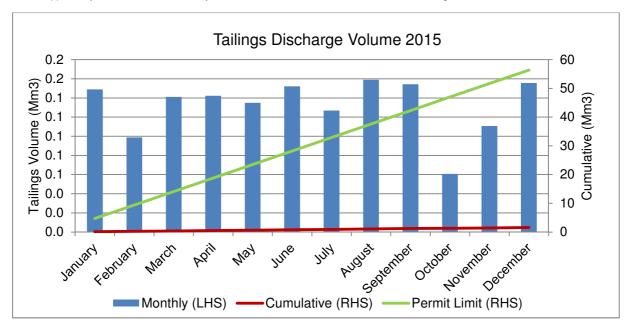
Figure 4-18 Anawe looking upstream showing runout from Anawe North Stable Dump

4.6.2 Anjolek Erodible Dump

In the last year, Anjolek recorded a very minor (<1%) increase in net volume and an equally minor (<1%) decrease in net surface area. Recent addition of material from waste dumping appeared to have been balance by erosion of waste from the lower tract.

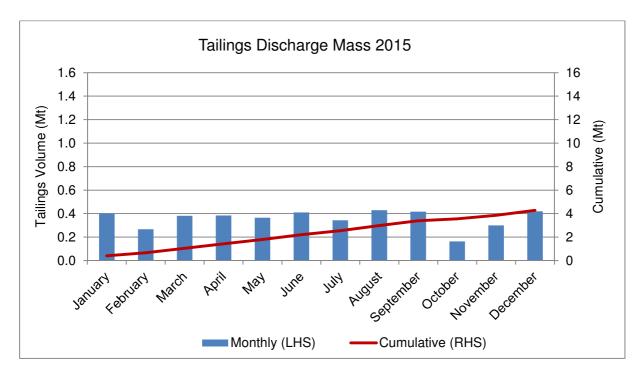
The helicopter inspection of April 2016, supported by LiDAR data, showed that the most notable change to Anjolek morphology was in the upper dump tract between the tip heads and the Kaiya River Confluence. While some erosion was noted in areas immediately below the tip heads, the gullies and erosion features noted in 2015 in the remainder of the reach had largely been 'filled in' by recent dumping. While the overall dump surface in this area was well below historically high surface levels, thickening had occurred throughout this reach compared to recent surveys, most notably between the Aiyoko ridge and the Kaiya River Confluence, see Figure 4-19. Below the confluence, after the dump heads east, the surface was predominantly erosional, with the 2015 surface generally below previous surveyed surfaces. Boundary plans showed that, while the toe had continued to retreat, there was little other notable change to the footprint of the dump. With regard to surface drainage, it was noted that the Kaiya River continued to maintain its path along the centreline of the dump, although a small amount of flow remained in the former course of the river adjacent to the northern slopes. The dump cross section profile was generally convex in the middle and lower tract, thus shedding surface drainage preferentially to the northern and southern flanks. This notwithstanding, the Kaiya River remained deeply incised along a roughly centreline path. There was no notable change to the morphology of the Kaiya River Fan where the river intersects the dump. While the upper dump tract was relatively 'fresh' and devoid of vegetation due to recent dumping activity, surface vegetation cover generally increased downstream below the Kaiya River confluence.

Figure 4-19 Upper tract of Anjolek where aggradation has occurred


Figure 4-20 Central tract of Anjolek showing surface drainage

4.7 Tailings Disposal

4.7.1 Riverine Tailings Disposal


Monthly and cumulative volumes (m³) of tailings solids discharged in 2015 are shown in Figure 4-21 and are reported in m³ for comparison with the permit limits which are applied in m³. The total volume of tailings solids discharged in 2015 was 1.59 Mm³ and is compliant with the environmental permit discharge limits of 56.35 m³.

The yearly and cumulative mass (t) of tailings solids discharged over the life of the mine are shown in Figure 4-23, and show the mass discharged in 2015 was consistent with historical volumes. Discharge mass (t) is reported to allow comparison with erodible waste rock discharge mass.

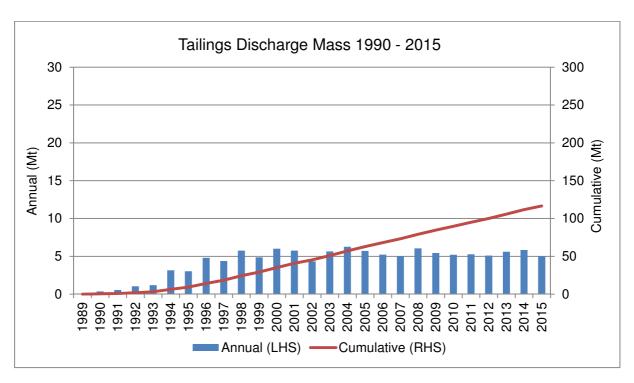
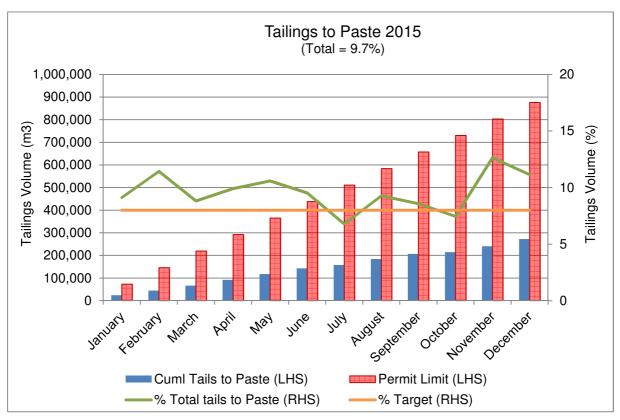

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-21 2015 Monthly and cumulative tailings discharge volumes (Mm³)

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-22 2015 Monthly and cumulative tailings discharge mass (Mt)



LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-23 Annual and cumulative tailings discharge mass (Mt) (dry solids) (1989 - 2015)

4.7.2 Tailings used as Underground Mine Backfill

The paste plant operated consistently throughout 2015. The monthly and cumulative volumes diverted to the underground mine are shown in Figure 4-24. A total of 272,234 m³ of the coarse fraction of tailings were diverted to paste in 2015, which is approximately 9.7% of the total tailings produced. The volume of tailings diverted in 2015 was the highest in the sites history and is attributed to the high rates of availability of the paste plant and increased underground mining.

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-24 Tailings diverted monthly to underground backfill in 2015

4.8 Tailings Quality

Contaminants of concern within the tailings discharge are cyanide (CN), total suspended solids (TSS) and metals. The quality of the discharge is influenced by the rate of tailings production, geochemistry of the ore, the gold extraction process and the operational effectiveness of the tailings treatment circuit. A summary of 2015 tailings quality is shown in Table 4-4.

Tailings treatment is managed to ensure compliance with internal site-developed requirements for pH and WAD-CN at the discharge point, permit requirements at the SG3 compliance monitoring station and to mitigate the risk of environmental impact within the receiving environment downstream from the point of discharge.

The rate of discharge and the slurry density, which influence TSS concentration of the tailings, have remained relatively consistent throughout the history of the operation. Discharge volumes and TSS concentration in 2015 were consistent with historical levels and are shown in Figure 4-25 and Figure 4-26.

The pH of the tailings discharge is dictated by the geochemistry of the ore, the gold extraction process and by the addition of lime during the tailings treatment stage. Controlling pH is critical for limiting the concentration of dissolved/bioavailable metals in the discharge. A range of metals within the discharge

have the potential to impact the downstream environment if the treatment process is not managed appropriately to reduce their bioavailability. The metals are found naturally within the ore body and pass through the process plant with the tailings, they are dissolved into soluble form during the oxidation process, which reaches as low as pH1. Adding lime raises the pH of the tailings and precipitates the metals as solid forms such as hydroxides, which are less bioavailable.

Tailings discharge pH is managed primarily through the addition of hydrated lime during the tailings treatment stage. The pH target for discharge has varied throughout the history of the operation, however after reviewing historical data and expert advice in 2012 the criterion has been set between pH 6.3 and pH 7.0.

Discharge during 2015 achieved 93% compliance with the internal site-developed end-of-pipe criteria for pH, results for 2015 are shown in Figure 4-27. Variation from the target occurred as a result of low pH events in September caused by interruptions to lime supply, however the minimum recorded pH value was pH 6.2, only slightly below the target level. Results from 2011 – 2015 are shown in Figure 4-28, the high level of compliance with the targets is attributable to the implementation of greater process control in the form of a trigger-action-response plan (TARP) which facilitates proactive control and initiates corrective action in the event that pH strays from the target range.

Cyanide concentrations within the tailings discharge are dictated by the volume of cyanide added to the circuit for gold extraction and the effectiveness of the cyanide destruction plant, which is part of the tailings treatment circuit. Cyanide concentrations in the tailings discharge during 2015 were low and in compliance with the site-developed end of pipe criteria, results for 2015 are shown in Figure 4-30. The performance achieved during 2015 has continued the trend of low CN concentrations demonstrated since the commissioning of the CN destruction plant in 2009. Similar to pH, the improved consistency achieved since 2013 is attributable to the implementation of greater process control in the form of a Trigger Action Response Plan (TARP) for managing the operation of the treatment circuit.

The 20%ile, median and 80%ile concentrations of total and dissolved metals in tailings slurry (water/solids mixture) during 2015 are shown in Table 4-4. Monthly concentrations for 2015 and annual concentrations between 2011 and 2015 are shown in Figure 4-33 to Figure 4-54 for all metals.

In 2015 the tailings exhibited elevated concentrations of total silver, arsenic, cadmium, chromium, copper, iron, mercury, nickel, lead and zinc, compared with upper river reference conditions and low concentrations of total selenium.

Concentrations of dissolved cadmium, copper, iron, nickel and zinc in tailings slurry were elevated in 2015. A moderate proportion of cadmium (6.1%), nickel (24%) and zinc (9.4%) were present in dissolved form throughout 2015 as shown in Table 4-5.

Metals concentrations in tailings solids are presented in Table 4-7 and show that concentrations of WAE arsenic, WAE cadmium, WAE copper, WAE mercury, WAE lead and WAE zinc are higher than the upper river trigger values and therefore pose a potential risk to the receiving environment.

Long-term trends throughout the history of the operation are shown in Table 4-7. The details of the statistical analysis are shown in Appendix C.

Table 4-4 Tailings slurry discharge quality 2015 (µg/L except where shown)

Parameter	20%ile	Median	80%ile		
pH^	6.3	6.4	6.5		
WAD-CN*	0.2	0.2	0.2		
Sulfate*	2,200	2,861	3,800		
ALK-T*	132	193	244		
TSS*	126,180	161,000	225,080		
Hardness*	2,849	3,345	3,869		
Ag-D	0.05	0.05	0.05		
Ag-T	824	1,500	2,180		
As-D	0.19	0.29	1.1		
As-T	26,000	37,000	43,800		
Cd-D	51	73	128		
Cd-T	522	810	1,360		
Cr-D	0.10	0.10	0.27		
Cr-T	6,320	9,300	11,800		
Cu-D	11	30	73		
Cu-T	8,900	12,000	16,000		
Fe-D	4.7	5,400	40,800		
Fe-T	3,794,000	5,330,000	6,876,000		
Hg-D	0.05	0.10	0.20		
Hg-T	56	82	128		
Ni-D	1,202	1,600	2,000		
Ni-T	3,420	5,100	6,380		
Pb-D	0.10	0.10	0.11		
Pb-T	44,400	67,000	99,200		
Se-D	1.6	2.4	4.2		
Se-T	500	500	500		
Zn-D	14,000	19,000	30,800		
Zn-T	93,800	150,000	248,000		
> UpRiv TV = Potential Risk					

 $^{^{\}wedge}$ std units, * mg/L, D - Dissolved fraction, T – Total

Table 4-5 Percentage of total metals in tailings in dissolved form ($\mu g/L$)

	% Total in Dissolved Form 2015				
Parameter	20%ile	Median	80%ile		
Ag-D	0.10	0.02	0.02		
As-D	0.00	0.00	0.01		
Cd-D	4.9	6.1	9.2		
Cr-D	0.01	0.02	0.03		
Cu-D	0.24	0.32	0.61		
Fe-D	0.00	0.00	0.11		
Hg-D	0.07	0.11	0.23		
Ni-D	21	24	36		
Pb-D	0.00	0.00	0.00		
Se-D	0.43	0.57	0.68		
Zn-D	7.2	9.4	16		

D - Dissolved fraction

Table 4-6 Tailings solids discharge quality 2015 (mg/kg whole sediment)

Parameter	20%ile	Median	80%ile			
Ag-TD	8.8	11	16			
Ag-WAE	0.50	0.50	0.61			
As-TD	192	240	322			
As-WAE	55	74	126			
Cd-TD	4.2	6.0	9.0			
Cd-WAE	3.1	4.0	7.2			
Cr-TD	62	71	90			
Cr-WAE	18	22	25			
Cu-TD	82	110	130			
Cu-WAE	66	84	110			
Fe-TD	40,880	48,200	52,140			
Fe-WAE	12,160	15,400	16,480			
Hg-TD	0.33	0.51	0.84			
Hg-WAE	0.10	0.16	0.27			
Ni-TD	35	41	49			
Ni-WAE	20	22	25			
Pb-TD	328	450	786			
Pb-WAE	41	74	116			
Se-TD	0.51	0.73	1.0			
Se-WAE	0.50	0.50	0.50			
Zn-TD	742	1,030	1,528			
Zn-WAE	476	680	1,186			
> UpRiv TV = Potential Risk						

WAE - Weak acid extractable, TD - Total digest

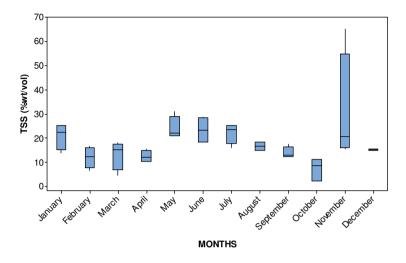


Figure 4-25 Monthly TSS in tailings discharge in 2015 (mg/L)

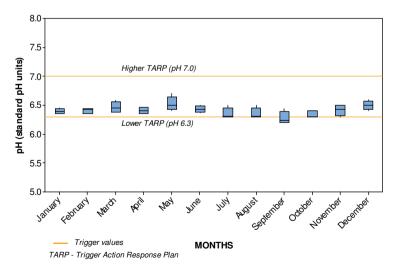


Figure 4-27 Monthly pH in tailings discharge in 2015

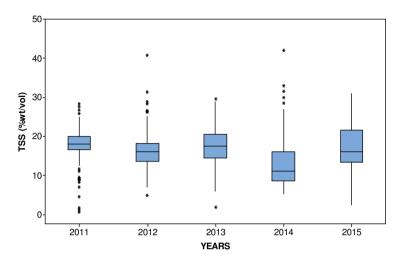


Figure 4-26 Annual TSS in tailings discharge 2011 - 2015 (mg/L)

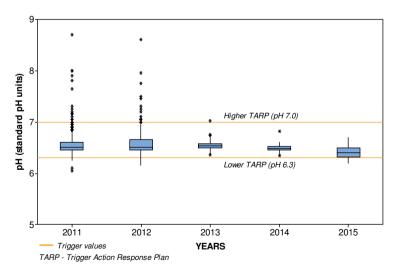


Figure 4-28 Annual pH in tailings discharge 2011 - 2015

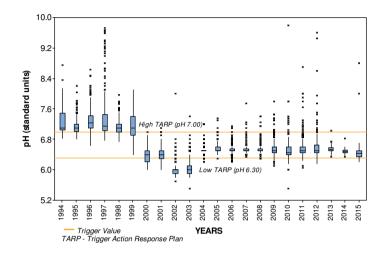


Figure 4-29 pH in tailings discharge 1994 - 2015

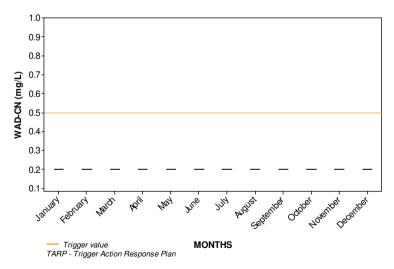


Figure 4-30 Monthly WAD-CN concentration in tailings discharge in 2015 (mg/L)

Intentionally left blank

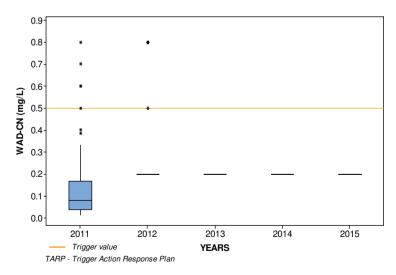


Figure 4-31 Annual WAD CN concentration in tailings discharge 2011 - 2015 (mg/L)

Figure 4-32 WAD CN in tailings discharge 1994 - 2015

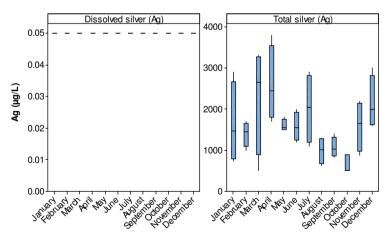


Figure 4-33 Monthly dissolved and total silver concentrations in tailings 2015 ($\mu g/L$)

Intentionally left blank

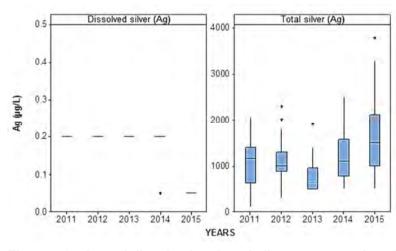


Figure 4-34 Annual dissolved and total silver concentrations in tailings 1994 - 2015 ($\mu g/L$)

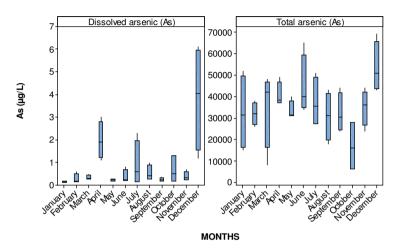


Figure 4-35 Monthly dissolved and total arsenic concentrations in tailings 2015 ($\mu g/L$)

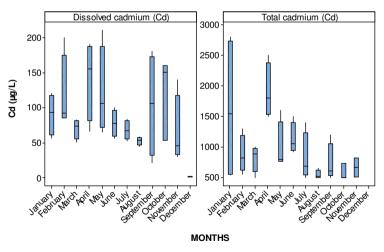


Figure 4-37 Monthly dissolved and total cadmium concentrations in tailings 2015 ($\mu g/L$)

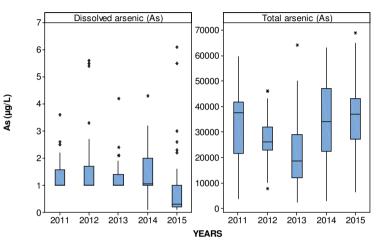


Figure 4-36 Annual dissolved and total arsenic concentrations in tailings 2011 - 2015 ($\mu g/L$)

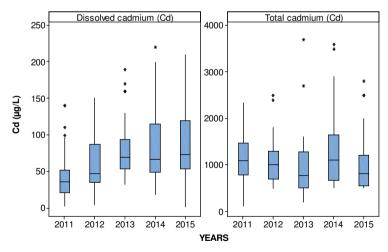


Figure 4-38 Annual dissolved and total cadmium concentrations in tailings 2011 - 2015 ($\mu g/L$)

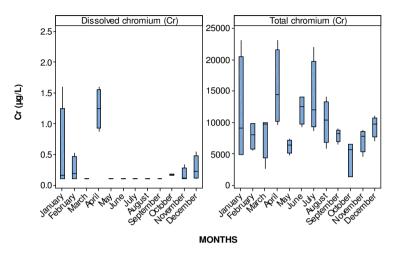


Figure 4-39 Monthly dissolved and total chromium concentrations in tailings 2015 ($\mu g/L$)

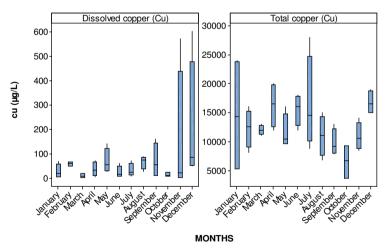


Figure 4-41 Monthly dissolved and total copper concentrations in tailings 2015 ($\mu g/L$)

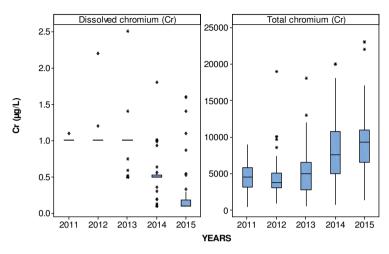


Figure 4-40 Annual dissolved and total chromium concentrations in tailings 2011 - 2015 ($\mu g/L$)

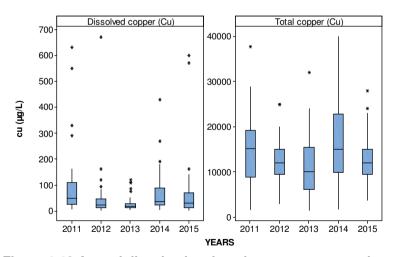


Figure 4-42 Annual dissolved and total copper concentrations in tailings 2011 - 2015 ($\mu g/L$)

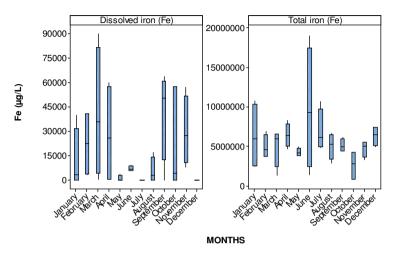


Figure 4-43 Monthly dissolved and total iron concentrations in tailings 2015 ($\mu g/L$)

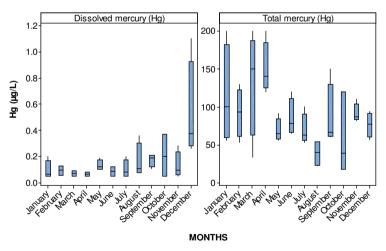


Figure 4-45 Monthly dissolved and total mercury concentrations in tailings 2015 ($\mu g/L$)

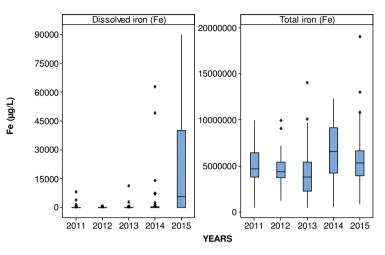


Figure 4-44 Annual dissolved and total iron concentrations in tailings 2011 - 2015 (µg/L)

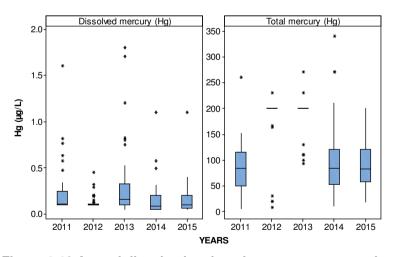


Figure 4-46 Annual dissolved and total mercury concentrations in tailings 2011 - 2015 ($\mu g/L$)

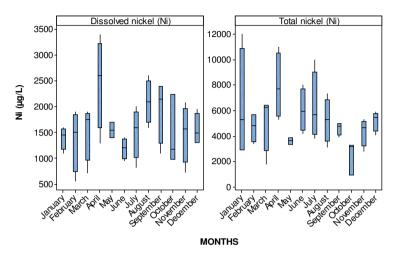


Figure 4-47 Monthly dissolved and total nickel concentrations in tailings 2015 ($\mu g/L$)

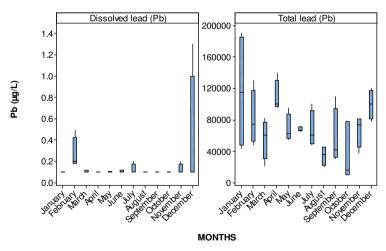


Figure 4-49 Monthly dissolved and total lead concentrations in tailings 2015 ($\mu g/L$)

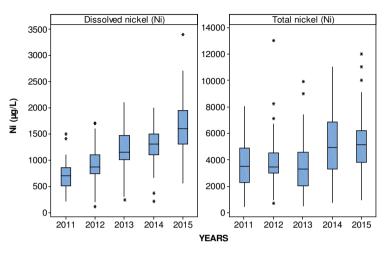


Figure 4-48 Annual dissolved and total nickel concentrations in tailings 2011 - 2015 ($\mu g/L$)

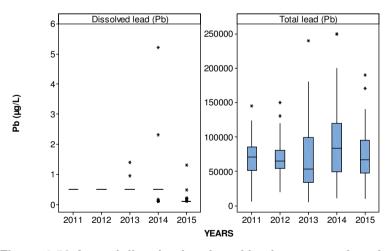


Figure 4-50 Annual dissolved and total lead concentrations in tailings 2011 - 2015 ($\mu g/L$)

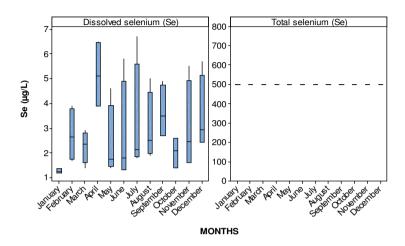


Figure 4-51 Monthly dissolved and total selenium concentration in tailings 2015 ($\mu g/L$)

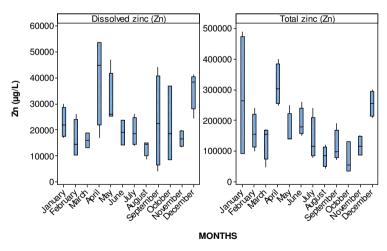


Figure 4-53 Monthly dissolved and total zinc concentrations in tailings 2015 ($\mu g/L$)

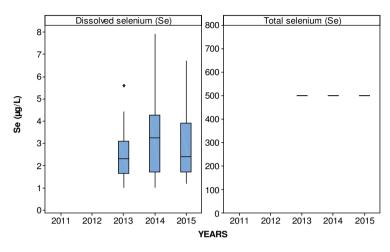


Figure 4-52 Annual dissolved and total selenium concentrations in tailings discharge 2011 - 2015 ($\mu g/L$)

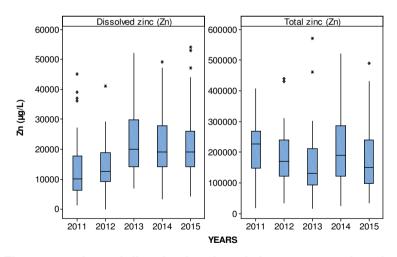
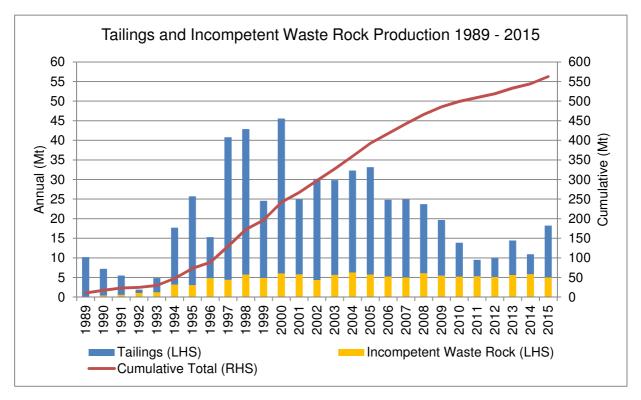


Figure 4-54 Annual dissolved and total zinc concentrations in tailings 2011 - 2015 ($\mu g/L$)

Table 4-7 Trends of tailings quality 2011 - 2015

Indicator	Spearman's rho	P-Value (P=0.05)	Trend (2011 – 2015)
рН	-0.075	0.027	Decreased over time
WAD-CN	≤LOR	≤LOR	No change over time
Sulfate	-0.299	< 0.001	Decreased over time
ALK-T	0.303	0.001	Increased over time
TSS	-0.277	< 0.001	Decreased over time
Hardness	-0.185	0.030	Decreased over time
Ag-D*	-0.728	< 0.001	No change over time
Ag-T	0.234	< 0.001	Increased over time
As-D*	-0.316	< 0.001	No change over time
As-T	0.126	0.052	No change over time
Cd-D	0.376	<0.001	Increased over time
Cd-T	-0.087	0.184	No change over time
Cr-D*	-0.725	<0.001	No change over time
Cr-T	0.492	<0.001	Increased over time
Cu-D	-0.049	0.448	No change over time
Cu-T	0.008	0.902	No change over time
Fe-D	0.343	< 0.001	Increased over time
Fe-T	0.164	0.011	Increased over time
Hg-D	-0.212	0.001	Decreased over time
Hg-T	-0.156	0.016	Decreased over time
Ni-D	0.646	<0.001	Increased over time
Ni-T	0.290	<0.001	Increased over time
Pb-D*	-0.623	<0.001	No change over time
Pb-T	0.059	0.365	No change over time
Se-D	0.111	0.193	No change over time
Se-T	≤LOR	≤LOR	No change over time
Zn-D	0.360	<0.001	Increased over time
Zn-T	-0.103	0.112	No change over time

^{*} The trend indicated by Spearman's rho and P of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.


D - Dissolved fraction, T - Total, LOR - Limit of Reporting

4.10 Sediment Contributions to the River System

The quantity of incompetent waste rock placed in the erodible dumps over the period of mine operation and the quantity of tailings produced by the mine are summarised in Table 4-8. Figure 4-55 presents the yearly and cumulative quantity of incompetent waste rock and tailings produced by the mine.

Table 4-8 Summary of incompetent waste rock and tailings disposal tonnages in 2015 and 1989 - 2015

Discharge Location	Total for 2015 (Mt)	Total 1989 – 2015 (Mt)	
Anawe Erodible Dump	4.31	224.8	
Anjolek Erodible Dump	9.9	222.2	
Tailings Discharge (dry solids)	5.0	116.6	
TOTAL	19.2	563.6	

LHS = Left hand side y-axis, RHS = Right hand side y-axis

Figure 4-55 Production of incompetent rock and tailings 1989 - 2015

These figures however do not represent the amount of sediment contributed to the river system each year from the tailings and erodible dumps.

The tailings is discharged across the Anawe erodible dump and as result a small fraction of the tailings solids settles along the body of dump and is not transported into the river system.

A minor proportion of sediment contribution from the erodible dumps occurs via erosion and failure across the body of dumps driven by the creeks and minor drainage pathways which traverse the body of the dump. The predominant mechanism contributing sediment to the river system from the erodible dumps is erosion and failure of the toe of dumps where the dumps are intersected by higher flowing rivers. The dominant factor for each of these mechanisms is rainfall and particle size distribution of the dumped material, rather than the volume of material being dumped at the head of the dump.

The volume of sediment contributed to the river system each year is estimated based on historical particle size distribution analysis and an annual survey of the erodible dumps which measures changes to dump surface area and volume.

A summary of the various estimates of particle size distribution for the combined Anawe and Anjolek dump toes is presented in Table 4-9 which also shows the adopted size distribution used for the purposes of sediment transport calculations.

It was assumed that 5% of all tailings discharged are trapped and stored in the dump and that, of the tailings leaving the dump, a further 5% is lost to long term storage (bed, bars and overbank) between the dump toe and SG3. Table 4-9 also shows the adopted size distribution used for the purposes of sediment discharge calculations.

Table 4-9 Estimates of particle size distribution of material sampled at erodible dump toe

Reference	Silt (%)	Sand (%)	Gravel (%)
1. CSIRO review 1995	58	27	15
2. PJV 1995 samples (average)	30	30	40
3. Anawe toe 1997 samples (average)	5	35	60
4. Black Sed. Accelerated Weathering Tests	72	20	8
5. Davies et al. 2002	76	11	13
Median (1, 2, 4 and 5)	59	22	19

Long-term survey data (2002 to 2015) and mass-balance calculations for the dumps are used to indicate that approximately 50-60% of erodible waste rock input has been lost downstream as a long-term average (these figures do not account for valley wall erosion). More recent survey data indicate that the amount of material exported downstream since 2010 expressed as a percentage of the amount of material dumped was higher at approximately 65% for Anawe and 170% for Anjolek. This partly reflects the lower rates of dumping in recent years, particularly to Anjolek dump, whilst there has been consistent erosion of material from the dumps by river flows. The data also indicate that there has been a net reduction in dump volume and surface area for Anjolek as erosion exceeds the low rates of dump input.

These results are consistent with results of visual inspections which suggest that the morphology of Anawe is relatively unchanged, although a gradual increase in surface area and volume over time is noted, while Anjolek appears to be receding.

Estimates of the rates of sediment loss from the dumps are summarised in Table 4-10, which also shows that the estimated average annual load of sediment that is transported downstream is 9.2 Mt/y based on survey data since 2010. This appears a reasonable estimate and compares well with the estimated suspended load at SG1 of approximately 10 Mt/y, based on historic measured flow and TSS data.

Table 4-10 Summary of long-term dump mass balance from survey data

Dump	Proportion of total dumped material released based on long term survey data since 2002 (%)	Median downstream transport rate since 2002 (Mt/y) (Total mass exported downstream from survey data divided by number of years between survey)	Downstream transport rate since 2010 (Mt/y) and percentage of dumped material released (%)	
Anjolek	61	4.3	4.5 (170%)	
Anawe	46	4.6	4.7 (65%)	
Total	NA	8.9	9.2	

Based on the figures above, Table 4-11 presents estimates of suspended sediment discharge from the SML for both tailings and waste rock. It should be noted that a level of inherent uncertainty exists within the survey data on a year to year basis due to the large area of the dump, difficult terrain in which the survey is conducted and changes to survey equipment and personnel from year to year. Therefore to account for this uncertainty the sediment discharge rate from the erodible dumps is based on the average volume change recorded since 2010.

Table 4-11 Estimate of sediment discharge from erodible dumps and tailings during 2015

Source	Total Sediment Discharged from Dumps (Mt/y)	Suspended Sediment Component (Mt/y)	Comments
Erodible Dumps	9.2	5.4	Assumes 59% (silt fraction) travels as suspended load
Tailings	4.8 (5.02 x 0.95)	4.6 (4.8 x 0.95)	Assumes 95% of tailings is transported to the river system and 5% remains stored in Anawe dump
TOTAL 2015	14	10	

4.11 Other Discharges to Water

4.11.1 Treated Sewage Effluent

The total volume of treated sewage effluent discharged from the 5 treatment plants that service the mine site and accommodation camps is shown in Figure 4-56. The Tawisakale sewage treatment plant (STP) totaliser meter calibration failed during the year and the maximum capacity of the plant was used to estimate the volume discharged. Discharges from all STPs were within the environment permit limits.

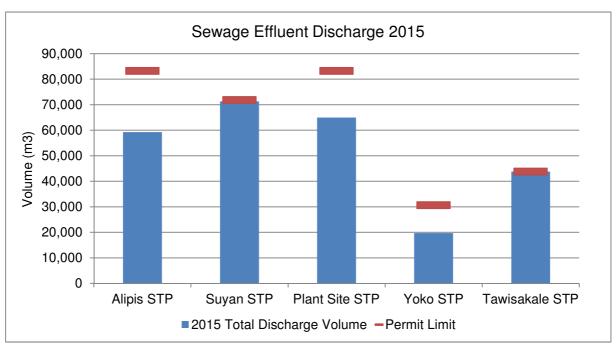


Figure 4-56 Total annual discharge volumes of treated sewage for 2015

The quality of the discharge from each STP is monitored for TSS, BOD_5 and faecal coliforms. The results of monitoring for 2015 are shown in Figure 4-57 to Figure 4-59 respectively. Operation of the sewage treatment plants did not consistently achieve compliance with the TSS criterion of 30 mg/L throughout the year. The spike in TSS at the Plantsite treatment plant on 24^{th} February 2015 was caused by a power outage, which resulted in inadequate treatment of effluent. All plants were effective for achieving compliance with the BOD_5 criterion and chlorination of the treated effluent was effective for achieving compliance with the faecal coliform criterion throughout the year. PJV has developed SOPs for each of the treatment plants and in September 2014 improved the competence of the operators through training. At the same time, higher level supervision and leadership were improved, which resulted in more consistent operational performance of the treatment plants in the fourth quarter of the year. PJV also has completed a specialist wastewater treatment audit of the operation of the sewage treatment plants and has completed a project to upgrade the Alipis treatment plant, which was recommended by the audit report.

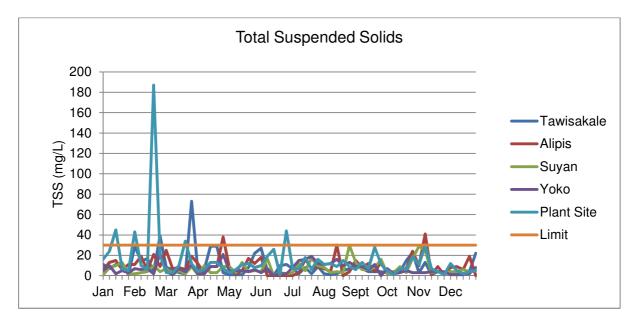


Figure 4-57 Average monthly TSS concentration in treated sewage discharge in 2015

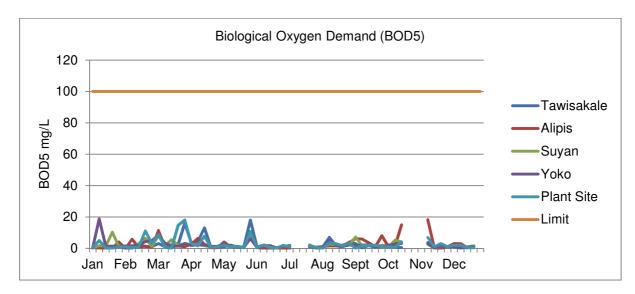


Figure 4-58 Average monthly BOD₅ concentration in treated sewage discharge in 2015

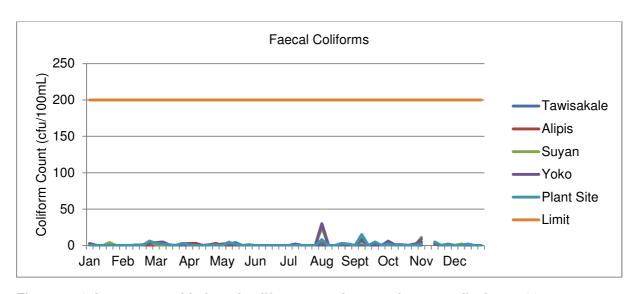


Figure 4-59 Average monthly faecal coliform count in treated sewage discharge 2015

4.11.2 Oil/Water Separator Effluent

The mine operates 19 oil-water separators at maintenance workshops and fuel storage and refuelling installations.

Figure 4-60 shows the average monthly monitoring results for the discharge of total hydrocarbons from the oil-water separators to local streams, compared with the internal site-developed target of 30 mg/L.

Hydrocarbons were detected in contact water sampled at the mine site boundary in five months of the year. PJV is implementing a program to upgrade the capacity of some of the oil-water separators for achievement of the discharge target. In addition, PJV has increased supervision and is implementing a training program to improve the competence of operators.

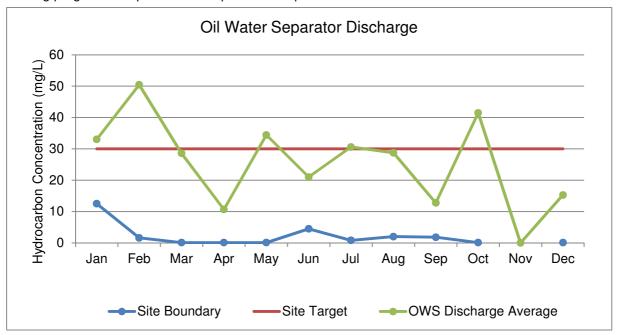


Figure 4-60 Average monthly total hydrocarbon concentrations in oil water separator discharges 2015

4.11.3 Mine Contact Runoff

Mine contact runoff is rainfall runoff from land disturbed by the mining operation and therefore has the potential to contribute contaminants to the receiving environment. The volume and quality of mine contact runoff are described in the following sections.

4.11.3.1 Contact Runoff Volumes

Table 4-12 shows the estimated volume of contact runoff from land disturbed by mining. It is impractical to measure runoff volumes and these have been estimated from rainfall and catchment areas. Following the completion of a project to collect contact runoff from the civil crusher area and for use in the SAG mill, there is minimal discharge from this area. PJV will apply to remove this discharge point from the environmental permit.

Table 4-12 Estimated volumes of contact runoff from mine lease areas 2015

Location	Total Rainfall run off 2015 (Mm³)	Permit Limit (Mm³/y)	
Starter Dump A (DP3)	230,000	1,822,000	
Civil crusher to Kogai Creek (DP4)	0	57,000	
Kogai Waste Dump to Kogai Creek (DP5)	8,048,000	1,681,920,000	
Open Pit and UG Mine drainage tunnel to	Kogai Creek (DP6)	875,000	12,096,000
Anawe stable dump to Wendoko Creek (D)P7)	276,000	4,492,800
Rainfall runoff from Hides to a tributary of (DP16)	2,000	87,000	
	TOTAL	9,431,000	1,700,475,000

4.11.3.2 Contact Runoff Water and Sediment Quality

The quality of water and sediment contained in runoff from within the mining lease is dictated by the landuse within the contributing catchment. Table 4-13 identifies the land uses within the contributing catchment for each monitoring site and the locations of the sites are shown in Figure 4-61.

Table 4-13 Mine contact runoff monitoring sites

Monitoring site name	Land Uses
Monitoring Site Hame	Lund 0303
28 Level (underground water discharged at adit)	Underground mine
SDA Toe	Competent waste rock dump
Kaiya River at Yuyan Bridge	Open cut mine
	Underground mine
	Erodible waste rock dump
Kaiya River downstream of Anjolek erodible dump	Erodible waste rock dump
Kogai Culvert	Competent waste rock dump
	Crushing and grinding
	Workshops
	Sewage treatment plant
	Hazardous substance storage
Kogai stable dump toe area	Competent waste rock dump
Lime Plant discharge	Lime processing
Wendoko Creek downstream of Anawe North stable dump	Competent waste rock dump

Monitoring site name	Land Uses
Yakatabari Creek downstream of 28 Level discharge	Underground mine Workshops Sewage treatment plant Hazardous substance storage
Yunarilama/Yarik portal	Open cut mine Underground mine



Figure 4-61 Mine contact runoff sampling location

Annual median values from monthly monitoring conducted in 2015 are shown in Table 4-14. The results indicate that Kogai Stable Dump Toe and Wendoko Crk d/s Anawe Nth, which both receive runoff from competent waste rock dumps exhibited elevated concentrations of dissolved cadmium and zinc and were slightly above neutral pH. The water quality at these sites is typical of neutral mine drainage and indicates that oxidation/reduction and neutralisation are occurring within the waste rocks dumps due to the presence of sulfides and carbonates. Alkaline pH indicates a net neutralising capacity within the waste rock, which is beneficial for preventing low pH runoff and reducing the concentration of dissolved/bioavailable metals. However the results indicate that this is not sufficient alkalinity to precipitate and adsorb cadmium and zinc, which typically require higher pH ranges than other metals to achieve complete precipitation. Discharge from the lime plant exhibits elevated pH and dissolved chromium. Runoff from Yakatabari Crk DS 28 Level exhibited elevated TSS and chromium and Yunarilama at Portal exhibited elevated TSS.

A summary of trends of water quality parameters between 2011 and 2015 in contact runoff is presented in Table 4-15, details of the statistical analysis are shown in Appendix C. The analysis shows that at 28 level the concentration of dissolved nickel has increased, at SDA toe the concentration of TSS has increased, at Kogai dump toe the concentration of dissolved cadmium and dissolved nickel and dissolved zinc has increased. At the lime plant the concentration of TSS, total chromium, total copper, total nickel, total lead and total zinc has increased, at Yakatabari Crk U/S 28 level the concentration of dissolved arsenic and total mercury has increased. At Yunarilama / Yarik Portal the concentrations of the following elements has increased: total silver, total arsenic, total cadmium, total chromium, total copper, total iron, dissolved mercury, total mercury, total nickel, total lead, total selenium and total zinc. All other elements at all other sites either reduced or remained stable over the time period.

The median concentrations of WAE and total metals in sediment in runoff from the mine areas are shown in Table 4-16. The results show elevated WAE-lead in sediment discharged from all sites except the lime plant and elevated WAE zinc in sediment discharged from 28 Level, Kogai Dump Toe, Wendoko Crk DS Anawe Nth and Yakatabari Crk DS 29 Level. Elevated lead and zinc in sediment is a reflection of the geology of the Porgera ore body which contains sphalerite, which is a zinc mineral, and galena which is lead mineral.

Monitoring WAE metals in sediment at the contact runoff sites began in 2015 and there are insufficient data available to perform a trend analysis. This will be done in future years once a multi-year data set has been established.

Table 4-14 Contact Water Quality 2015 median values (µg/L except where shown)

Parameter	28 Level	SDA Toe	Kaiya Riv D/S Anj dump	Kogai Culvert	Kogai Dump Toe	Lime Plant	Wendoko Crk D/S Anawe Nth	Yakatabari Crk D/S 28 Level	Yunarilama / Yarik @ Portal
pH^	7.7	7.6	7.5	7.7	7.6	11.2	7.6	7.6	7.4
WAD-CN*	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Sulfate*	220	57	59	170	622	2	1,160	393	515
ALK-T*	110	131	87	152	240	528	168	114	128
TSS*	78	76	291	180	68	382	57	6,273	8,415
Hardness*	363	165	77	285	909	378	1,283	352	610
Ag-D	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Ag-T	0.15	0.05	1.95	0.31	0.09	0.10	0.08	25	101
As-D	1.9	0.8	1.0	1.2	0.7	0.2	1.1	13.0	3.2
As-T	4.9	1.6	81	11	4.8	3.3	4.8	415	1,165
Cd-D	0.07	0.05	0.05	0.06	1.8	0.05	0.76	0.05	0.10
Cd-T	1.6	0.3	3.8	1.9	3.1	0.3	1.8	28	59
Cr-D	0.10	0.11	0.10	0.11	0.10	3.4	0.10	1.4	0.14
Cr-T	2.4	1.6	100	5.2	4.6	38	1.1	195	920
Cu-D	0.50	0.84	0.56	1.0	0.63	0.60	0.64	0.91	0.67
Cu-T	7.7	2.1	75	7.4	6.1	10	3.6	335	865
Fe-D	6.0	18	8.2	9.8	5.7	2.5	3.7	7.6	9.6
Fe-T	7,400	1,300	190,000	7,350	4,300	10,000	1,800	160,000	923,000
Hg-D	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Hg-T	0.05	0.05	0.49	0.06	0.06	0.05	0.05	3.8	13
Ni-D	6.4	0.70	0.63	0.74	2.3	0.5	1.8	1.6	4.1
Ni-T	25	2.8	104	5.0	5.8	12	3.7	170	790
Pb-D	0.10	0.62	0.17	0.38	0.52	0.10	0.26	1.4	0.46
Pb-T	27	9.7	370	47	28	7.1	13	2,000	2,850
Se-D	0.20	0.21	0.42	0.20	0.20	0.20	0.64	0.36	0.96
Se-T	0.20	0.21	2.1	0.42	0.25	0.27	0.61	2.9	13
Zn-D	12	6.7	4.0	10	350	0.9	310	6.6	6.3
Zn-T	305	46	895	320	490	39	495	5,460	10,500

[^] std units, * mg/L, D = Dissolved fraction, T = Total

Table 4-15 Trends of water quality contact runoff 2011 - 2015 (as tested using Spearman Rank Correlation)

Increased over time

Parameter	28 Level	SDA Toe	Kaiya Riv D/S Anj dump	Kogai Culvert	Kogai Dump Toe	Lime Plant	Wendoko Crk D/S Anawe Nth	Yakatabari Crk D/S 28 Level	Yunarilama / Yarik @ Portal
рН									
WAD-CN									
Sulfate									
ALK-T									
TSS									
Hardness									
Ag-D									
Ag-T									
As-D									
As-T									
Cd-D									
Cd-T									
Cr-D									
Cr-T									
Cu-D									
Cu-T									
Fe-D									
Fe-T									
Hg-D									
Hg-T									
Ni-D									
Ni-T									
Pb-D									
Pb-T									
Se-D									
Se-T									
Zn-D									
Zn-T									
	Decreased or	r no change ove	r time	colved fraction. T	Total				
	Decreased or no change over time D - Dissolved fraction, T - Total								

74

Table 4-16 Contact Sediment Quality 2015 median values (mg/kg whole fraction)

Parameter	28 Level	SDA Toe	Kaiya R D/S Anj dump	Kogai Culvert	Kogai Dump Toe	Lime Plant	Wendoko Crk D/S Anawe Nth	Yakatabari Crk D/S 28 Level	Yunarilama / Yarik @ Portal
Ag-WAE	1.3	0.50	0.50	0.50	0.50	0.50	0.50	1.1	0.50
Ag-TD	13	1.3	1.8	2.2	3.3	0.50	1.8	5.8	2.9
As-WAE	7.9	4.7	4.5	8.9	10	0.57	7.5	16	6.3
As-TD	250	81	72	120	130	5.6	82	110	110
Cd-WAE	1.0	0.70	0.50	0.69	1.4	0.50	1.4	1.4	0.63
Cd-TD	10	3.3	4.0	5.1	7.9	0.53	3.8	5.8	2.9
Cr-WAE	13	3.3	3.7	2.6	4.1	8.7	2.1	4.5	4.4
Cr-TD	83	26	30	31	50	19	27	48	31
Cu-WAE	18	5.1	5.2	4.2	5.9	2.4	7.2	13	5.0
Cu-TD	130	26	37	54	64	5.7	36	66	41
Hg-WAE	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Hg-TD	0.93	0.22	0.38	0.49	0.31	0.02	0.15	0.57	0.38
Ni-WAE	19	5.4	5.4	3.0	4.6	2.1	4.0	6.9	5.2
Ni-TD	68	27	35	30	38	6.3	27	36	32
Pb-WAE	140	98	120	100	160	3.5	78	260	79
Pb-TD	630	230	320	210	250	4.6	140	290	150
Se-WAE	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Se-TD	1.0	0.67	0.95	0.68	0.57	0.50	0.80	0.68	0.71
Zn-WAE	580	110	69	100	200	15	210	240	110
Zn-TD	2,000	600	700	910	1,420	53	780	1,220	620
	> UpRiv TV = Potential Risk								

WAE - Weak Acid Extractable, TD - Total Digest

4.12 Point Source Emissions to Air

PJV carried out monitoring of concentrations of metals in the emissions from stationary sources at the mine site, the Lime Plant and at Hides Power Station in 2015. Papua New Guinea does not have legislation for controlling emissions to air and PJV has voluntarily set a target of complying with the relevant Australian Standards, which are the NSW Protection of the Environment Operations (Clean Air) Regulation 2010 and the Victoria State Environment Protection Policy (Air Quality Management) 2001. A comparison of results against the standards is presented in Section 7.7.

4.13 Greenhouse Gas and Energy

Figure 4-62 presents information on the average annual rate of carbon dioxide equivalents (CO_2 -e) emissions per tonne of ore processed. The Porgera annual CO_2 -e emission rate is higher than at other gold mining operations because of the high energy requirement for the pressure oxidation processing of ore in autoclaves. GHG efficiency declined by 2.6% in 2015 compared to 2014, however a decreasing trend since 2009 has been maintained.

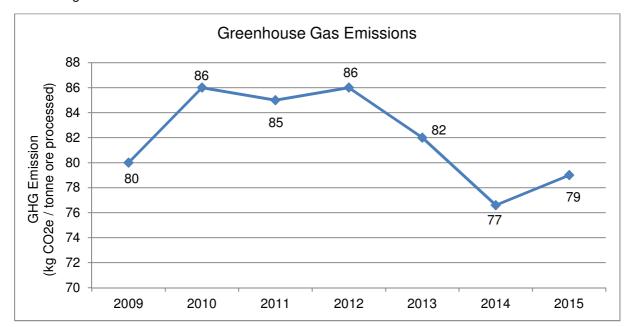


Figure 4-62 Energy efficiency 2009 - 2015

4.14 Closure Planning and Reclamation

4.14.1 Mine Closure Plan

In 2015 Porgera mine revised the draft Mine Closure Plan in line with the Barrick Closure Standard and Guidelines. This plan was based on the content from previous draft closure plans produced for the project in 2007 and 2011 and highlights closure considerations for the mine infrastructure, including safety and environmental aspects during the closure process. The plan also includes estimates of closure costs.

4.14.2 Life of Mine

The Life of Mine (LOM) for Porgera mine was reviewed and revised in 2015, following the revision of the geological model reserves. Ore production and processing are expected to cease in 2027. The closure period will begin in 2028 with decommissioning and dismantling of plant and infrastructure

which is expected to take approximately three years. The establishment of a stable vegetation cover across the plant site and related infrastructure will take approximately two years while the post-closure period including monitoring and maintenance will be eight years, inclusive of the time required for revegetation.

4.14.3 Mine Closure Vision and Objectives

Porgera's vision for mine closure is "leaving behind a better future". This vision will be achieved through Porgera's specific objectives for mine closure:

- Fully integrate mine closure planning with operational mine planning during the life of the project ensuring orderly, cost-effective and timely mine completion.
- Ensure the safety and health of workers during site closure activities (decommissioning and rehabilitation).
- Retain transport facilities considered of value to the local community in an operational condition for transfer to local and regional authorities. Ongoing maintenance and liability for such structures will be passed to the local authority.
- Monitor rehabilitation performance during all phases of the project and implement appropriate actions where observed trends do not reflect agreed closure criteria.
- Ensure that adequate financial provision is made to cover all agreed closure commitments until such time as final lease relinquishment.
- Comply with mine closure permitting and regulatory requirements and at all times obtain documented confirmation of compliance.

4.14.4 Key Closure Environmental and Social Issues

Some of the key environmental issues identified affecting closure include waste rock dump stability, water quality and final void management, while social considerations at mine closure include loss of employment, livelihood, artisanal mining and facilities and social services. These issues and the associated risks will be looked at closely and measures highlighted in the plan will be implemented to mitigate closure liability.

4.14.5 Mine Closure Consultation and Stakeholder Identification

The mine closure and stakeholder consultation will be critical in ensuring a safe and successful exit from the operation. Stakeholders' views and expectations will be discussed during the consultation process to achieve balanced, realistic and achievable outcomes during closure.

Porgera closure stakeholders will be explicitly listed in the closure plan. Key people will be nominated by respective stakeholder groups to represent the closure committee group. The closure committee group's primary role will be to identify issues of concern, look at ways to address those issues and to monitor their projected outcomes during the closure process.

4.14.1 Progressive Closure and Reclamation

Since the start of mining at Porgera, the majority of the areas of land disturbance are still being actively used for mining operations, which has limited the land available for reclamation and revegetation. The total area reclaimed to date is 239 hectares and most of this area is on the Kogai competent waste rock dump, where the use for mining purposes was completed in 2003. The area was reclaimed by placement of a soil cover of brown mudstone and colluvium, and then revegetated. The soil cover was stabilized to protect it from erosion by planting with a range of grasses and legumes. Following the establishment of the groundcover of grasses and legumes, local lower montane tree species were planted.

Very limited areas of disturbed land became available for reclamation in 2015 as mining and related activities were still progressing.

The revegetation activities for the year included planting the reclaimed area with a grass and legume seed mix to stabilize soil as the first phase of vegetation establishment. The hydroseeder was used to seed failed areas within the open pit mining area during the year.

A total of 5870 tree seedlings were planted on the Kogai dump at K62 and K65. Tree seedlings were purchased from local suppliers and raised at the nursery for hardening before transplanting. The numbers and species planted are shown in Table 4-17.

Table 4-17 Species of tree seedlings planted in 2015

Туре	Scientific Name	Local Name	Number Planted 2015	
Hardwood	Castanopsis acuminatissima	Pai	144	
	Dacrydilium nidilium	Pawa	106	
	Elaeocarpus polydactylus Schltr	Yano	58	
	Nothofagus sp	Taro	725	
	Pinus Wallichiana	Tai	2	
	Podocarpus Neriifolius	Kaipu	980	
	Syzgium richardsonianum	Pip	1,265	
Softwood	Daphniphllum sp	Yongena	68	
	Cordyline sp	Tanget	23	
	Dodonea viscosa	Lokai	59	
	Eurya pluriflora (kobuski) Baker	Nekeya	38	
	Ficus aurantiacafoldia	Marakombi	5	
	llex arnhemensis	Muli	178	
	Libocedrus papuanus	Pulapia	71	
	Litsea timorauna	Mara	120	
	Pentaphylaceae adinandra	Kapano	87	
	Perrotteia aipestris Blume	Epulaumbe	565	
	Sarananga sp	Tendaka	50	
	Saurauia alitterra Royen	Sanakango	25	
	Saurauia benguetensis Merr	Kuaro	176	
	Acalypha villosa	Souk	205	
Mixed	Mixed species	Mixed	920	
		TOTAL	5,870	

4.15 Non-mineralised Waste

Non-mineralised waste is all waste produced by the operation other than waste rock and tailings. Porgera has developed a Waste Management Plan that describes the methods for waste segregation, reuse, recycling or treatment for safe disposal. Figure 4-63 shows the proportion of each type of waste produced at the mine site. Waste oil made up 26% of the non-mineralised waste in 2015, 100% of which is re-used as fuel for heating the lime kiln. Sewage Treatment Plant sludge is disposed by land application at a reclaimed area of Kogai Waste Rock Dump. Scrap paper is shredded and used as mulch for hydroseeding in land reclamation. Scrap steel and other metals are stored for sale to a recycling contractor. Combustible wastes are disposed by incineration at 1100°C and remaining materials are disposed to a landfill.

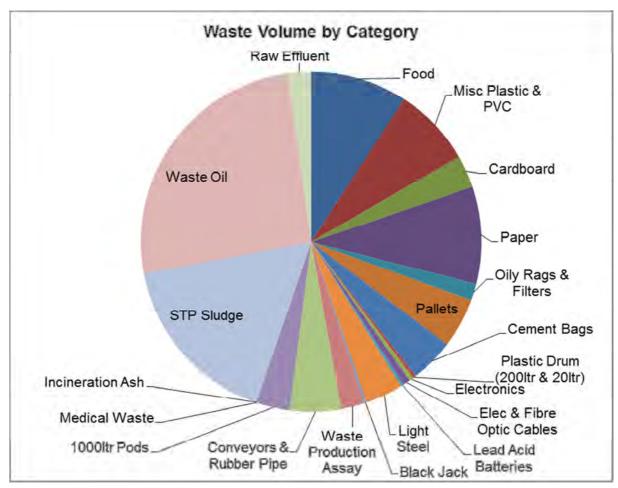


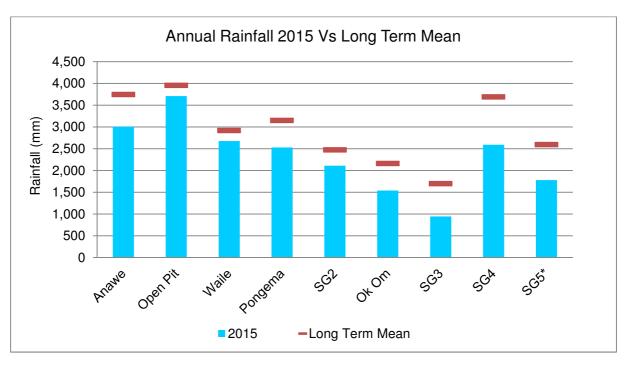
Figure 4-63 Non-mineralised waste production by type

5 BACKGROUND ENVIRONMENTAL CONDITIONS AND TVs

The environmental conditions of all natural systems will change throughout time due to natural changes in climate, geography and biology. An objective of the AER is to determine how much change has occurred within the environment adjacent to and downstream of the Porgera Mine, how much of that change is caused by factors not related to the mining operation, and how much of that change is caused by factors that are related to the mining operation.

Aspects of the operation that have the potential to interact with the environment (the environmental aspects) have been discussed and quantified in Section 4.

The purpose of this section is to quantify the natural, non-mine related changes within the environment adjacent to the Porgera mine. This information is then used to determine what degree of change observed at the test sites is attributable to natural change and what degree is attributable to the mine environmental aspects. The objectives of this section are to:


- 1. Quantify the climatic condition, meteorological and hydrological conditions at the mine site and within the receiving environment during 2015;
- Describe the background environmental physical, chemical and biological conditions of aquatic ecosystems not influenced by the operation (i.e. reference site condition) and identify and quantify the natural changes at those sites during 2015 and over the history of mine operation; and
- 3. Establish risk assessment and impact assessment trigger values (TVs) and performance criteria for physical, chemical and biological conditions at Upper River, Lower River and Lakes and Off-River Water Bodies to support the compliance, risk, impact and performance assessments conducted in Section 6 and Section 7.

5.1 Climate

5.1.1 2015 Rainfall in Strickland River Catchment

Figure 5-1 shows annual rainfall at stations in the upper, middle and lower Strickland catchments. The upper catchment can broadly be described as the reach of river extending from the mine site down to SG2, the middle extends from SG2 down to SG3, and the lower from SG3 to SG5 (near Lake Murray) and beyond to the Fly River.

In general terms, rainfall in 2015 was approximately 14% below the long term mean in the upper reach. In the middle reach (SG2, Ok Om, SG3) rainfall was about 29% below average. Rainfall was about 31% below average in the lower reach (SG4, SG5). The SG5 station was vandalised during the year which led to the loss of 18.9% of the data record.

^{*}Incomplete data record due to equipment vandalism

Figure 5-1 Comparison of annual rainfall (2015 data versus long term means) at sites in the Strickland Catchment

5.1.2 Hydrological Context

In the context of longer term rainfall trends, Figure 5-2 shows the rainfall pattern of recent years at Anawe (the station with the longest period of record) plotted with the Pacific Decadal Oscillation (PDO). The PDO is a pattern of Pacific climate variability that shifts phases on at least inter-decadal time scale, usually about 20 to 30 years. The plotted lines represent the cumulative deviation of each year's rainfall total and PDO value from the overall mean of the dataset. To interpret the graph, a downward sloping line represents 'below-average' years, while an upward sloping line represents 'above average years'. This demonstrates that since 1997, rainfall was notably higher than the period 1974-1997 suggesting decadal scale variability.

Figure 5-3 presents the Pacific Decadal Oscillation (PDO) index expressed as a residual mass in order to identify trends more clearly. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of latitude 20 °N. During a 'warm' or 'positive' phase, the west Pacific becomes cool and part of the eastern ocean warms; during a 'cool' or 'negative' phase, the opposite pattern occurs. The PDO is strongly related to El Nino Southern Oscillation (ENSO) episodes but operating over much longer timescales. ENSO events generally mean low rainfall for PNG, however the Porgera rainfall also appears inversely correlated with the PDO on a decadal scale, although both indices are correlated with Anawe rainfall on a 10-year moving average basis. Although detailed analysis of rainfall trends is not the focus of this section, the analysis serves to highlight that rainfall (and, by inference, river flow and sediment transport) varies over both long and short-term timescales.

2015 was affected by an El Nino event that began to decline towards the end of the year. An El Nino event is defined when the ENSO falls below -8 which compares to a 2015 value of -11.3.

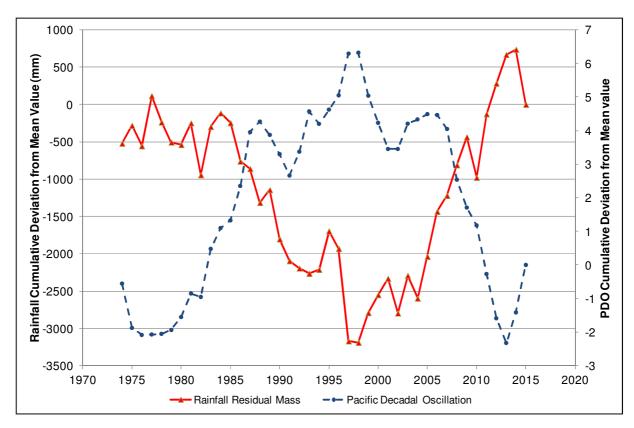


Figure 5-2 Residual mass plots Anawe rainfall station data

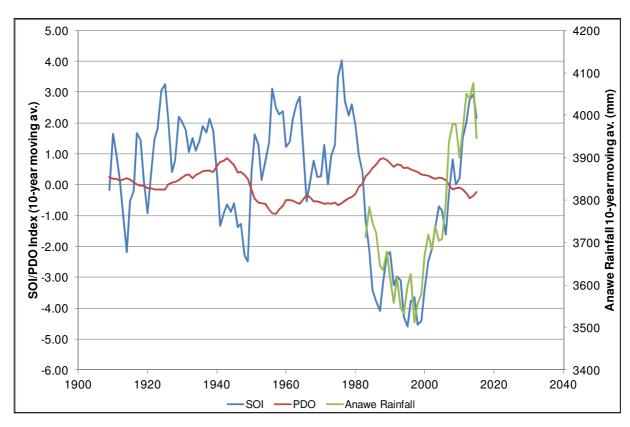


Figure 5-3 Anawe rainfall, SOI and PDO indices on 10-y moving average

5.1.3 Rainfall Summaries

5.1.3.1 Anawe Plant Site

Meteorological data are measured continuously at Anawe plant site. The parameters monitored are rainfall, temperature, humidity, evaporation, wind vectors, barometric pressure and solar radiation. Due to the orographic influence of the surrounding mountains there is minimal seasonal variability throughout the year at Porgera. Winds are katabatic (down-slope) in nature and generally tend from the east. Table 5-1 provides a summary of the meteorology data collected during the year.

Table 5-1 Summary of meteorological data recorded at Anawe plant site during 2015

Parameter	Yearly total	Daily max	Daily min	Daily mean	Long-term daily mean	Std dev. (%)
Rainfall (mm)	2998	99.2	0.0	8.3	10.3	11.4
Max/Min Temp. (°C)	-	19.5	8.2	-	-	1.9/2.1
Mean Daily (°C)	-	21.0	11.0	15.7	16.1	1.4
Sunshine (hr)	1616	10.5	0.0	4.5	4.1	2.1
Evaporation (mm)	1052	7.4	0.0	2.9	2.9	1.2
Wind Run (km)	13960	102.0	0.0	38.6	58.5	12.1

The historical rainfall at Anawe is shown in Figure 5-4 and Figure 5-5. The highest annual rainfall recorded at Anawe was 4,594 mm in 2011. Figure 5-4 shows monthly total rainfall at Anawe in 2015 against long-term monthly means. Annual rainfall was 2,998 mm on 293 wet days; the long-term mean annual total is 3,743 mm.

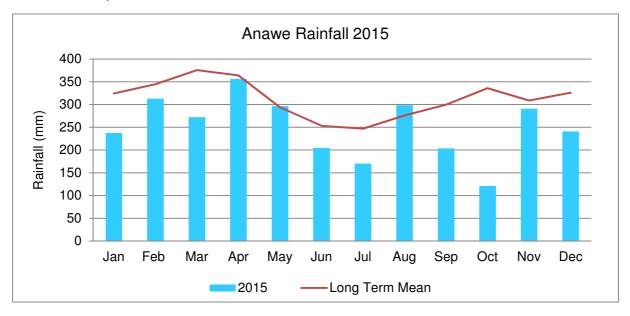


Figure 5-4 Monthly rainfall at Anawe Plant Site during 2015 compared to long-term monthly means

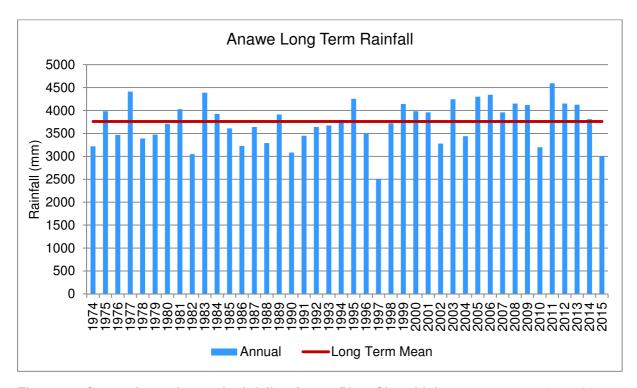


Figure 5-5 Comparison of annual rainfall at Anawe Plant Site with long-term mean 1974 - 2015

5.1.3.2 Open Pit

Figure 5-6 shows total monthly rainfall at the Open Pit during the year against long-term monthly means. Annual rainfall was 3,709 mm on 296 wet days; the long-term mean annual total is 3,873 mm. Figure 5-7 shows the historical annual totals.

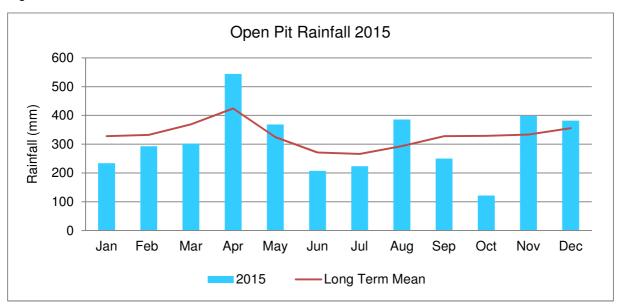


Figure 5-6 Rainfall at Open Pit during 2015 compared to long-term monthly means

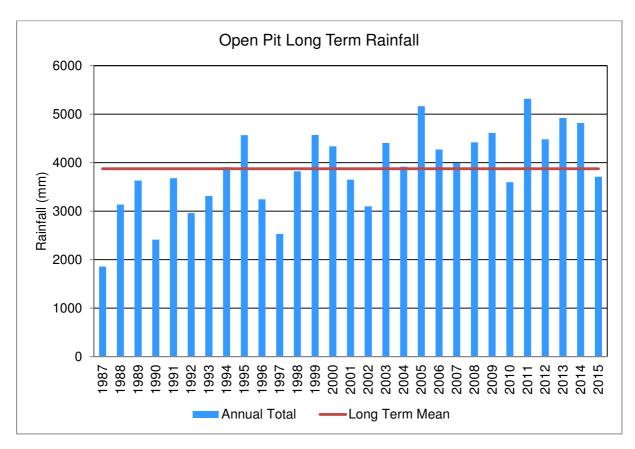


Figure 5-7 Annual rainfall at Open Pit 1988 - 2015

5.1.3.3 Waile Creek

Figure 5-8 shows rainfall at Waile Dam during 2015 compared to long-term monthly means. Annual rainfall was 2,677 mm on 287 wet days, long-term mean annual total is 2,906 mm.

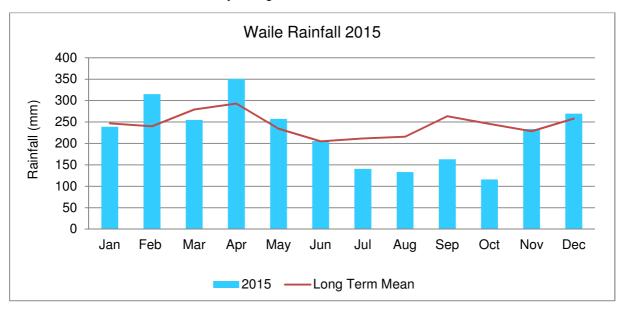


Figure 5-8 Rainfall at Waile Dam during 2015 compared to long-term monthly means

5.1.3.4 Pongema

Figure 5-9 shows rainfall at Suyan Camp during 2015 against long-term monthly means. Annual rainfall was 2,530 mm on 282 wet days; the long-term mean annual total is 2,942 mm.

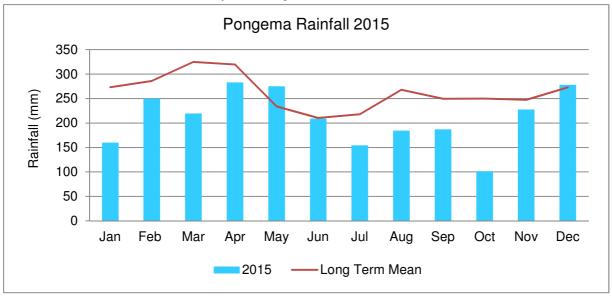


Figure 5-9 Rainfall at Suyan Camp during 2015 compared to long-term monthly means

5.1.3.5 SG2

Figure 5-10 shows rainfall at SG2 (Lagaip River) during the year for the months data were available plotted against long-term monthly means. Annual rainfall was 2,108 mm on 212 wet days. The long-term mean annual total is 2,043 mm.

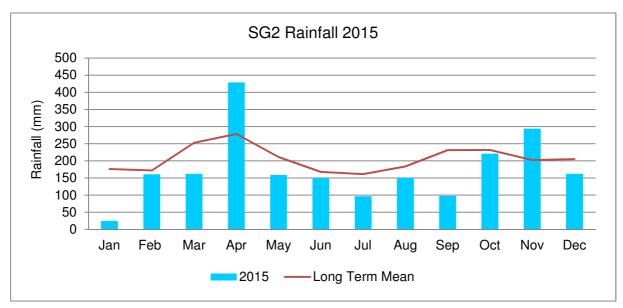


Figure 5-10 Rainfall at SG2 during 2015 compared to long-term monthly means

5.1.3.6 Ok Om

Figure 5-11 shows rainfall at Ok Om during 2015 against long-term monthly means. Annual rainfall of 1,542 mm fell on 182 wet days; the long-term mean annual total is 2,089 mm.

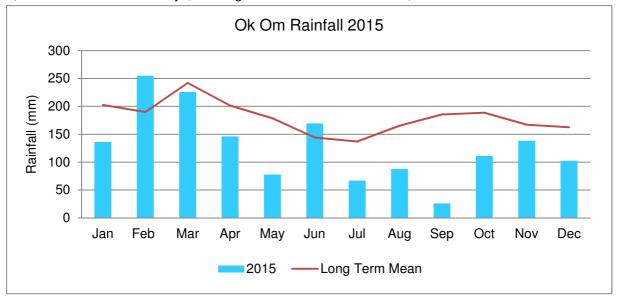


Figure 5-11 Rainfall at Ok Om during 2015 compared to long-term monthly means

5.1.3.7 SG3 (Compliance site)

Figure 5-12 shows rainfall at the SG3 compliance site during 2015 against long-term monthly means. Annual rainfall of 947 mm fell on 158 wet days; the long-term mean annual total is 1,724 mm.

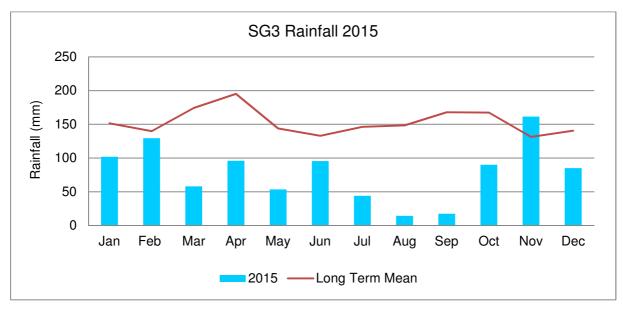


Figure 5-12 Rainfall at SG3 during 2015 compared to long-term monthly means

5.1.3.8 SG4

Figure 5-13 shows rainfall at SG4 in 2015 against long-term monthly means. Annual rainfall of 2,598 mm on 205 wet days was recorded against the long-term mean annual total of 3,669 mm.

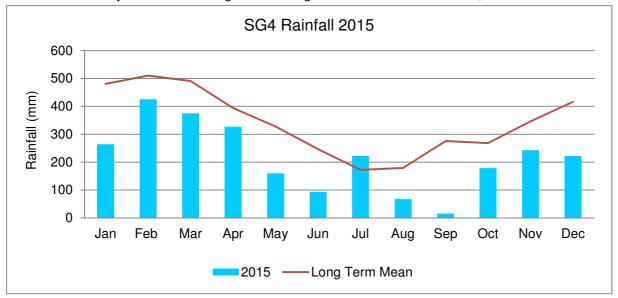
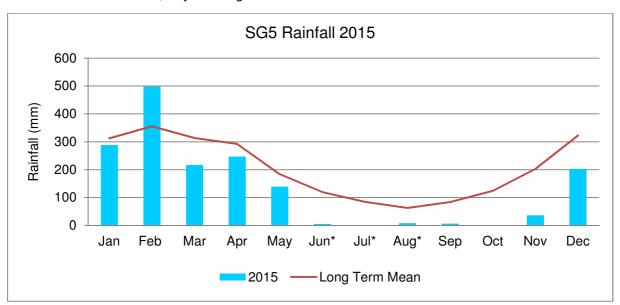



Figure 5-13 Rainfall at SG4 during 2015 compared to long-term monthly means

5.1.3.9 SG5

Figure 5-14 shows rainfall at SG5 during the year against long-term monthly means. Annual rainfall of 1,649 mm fell on 143 wet days, the long-term mean annual total is 2,238 mm. Very low rainfall was recorded from June to October. However, due to vandalism and logger failure, a total of 69 lost days of record was lost in June, July and August.

^{*}Incomplete data record due to equipment vandalism

Figure 5-14 Rainfall at SG5 during 2015 compared to long-term monthly means

5.2 Hydrology

5.2.1 Strickland River Catchment

The river systems downstream of, and potentially impacted by, the mine are the Porgera, Lagaip and Strickland Rivers. From a hydrological perspective these can be broadly grouped into three regions of interest; upper catchment (Porgera Valley), middle catchment (SG2 to SG3) and lower catchment (SG3 to lowlands / floodplain). The Ok Om monitoring site is a reference and therefore not influenced by the mine.

In general, flows were about 40 - 50% below average in the upper region sites of Kogai at SAG Mill and Kogai at culvert. Portal at Yunarilama was 15% above average. About 10 - 45% below average flows were recorded in the middle region, and 20-30% below average in the lower regions which is commensurate with rainfall being below average due to El Nino conditions.

A summary of river flow data collected at the operational stations during the year is given in Table 5-2, while plots of yield and total flow for the main stations are provided in Figure 5-15 and Figure 5-16 respectively. Data records were affected by vandalism at Kogai @ Culvert, Portal @ Yunarilama and Lagaip at SG2.

Station	Days lost 2015	Max	Mean	Min	Long-term Mean	
Kogai @ SAG Mill	0	0.705	0.260	0.086	0.70	
Kogai @ Culvert	120	4.283	0.950	0.051	1.71	
Portal @ Yunarilama	120	1.090	0.330	0.130	0.29	
Lagaip @ SG2	253	457	189	43	213	
Ok Om	0	719	135	55	135	
Strickland @ SG3	0	2600	436	248	741	
Strickland @ SG4	0	6360	1930	946	2553	
Strickland @ SG5	0	4630	2467	584	3165	

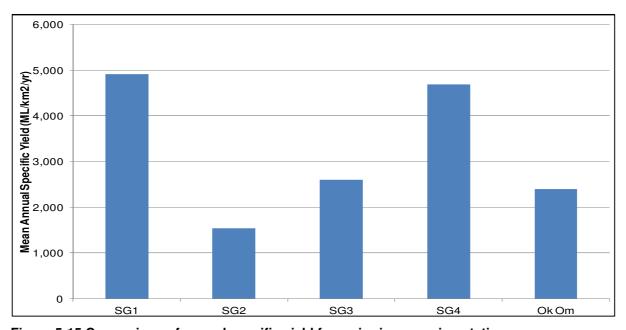


Figure 5-15 Comparison of annual specific yield for main river gauging stations

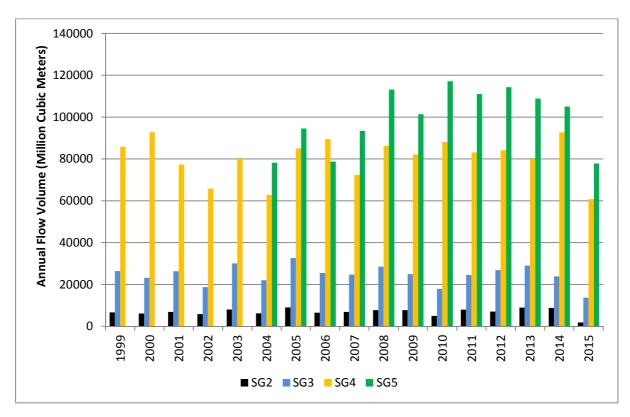


Figure 5-16 Mean annual flow volumes for the main river gauging stations in 2015

5.2.2 SG3 (Compliance site)

The total flow for the year at SG3 of 13,730 GL was approximately 36% below the long-term average of 21,470 GL. June had the highest monthly flow with 1,779 GL while October had the least with 749 GL. Figure 5-17 shows the daily total flows for the year at SG3 while Figure 5-18 shows total monthly flows compared to long-term monthly averages.

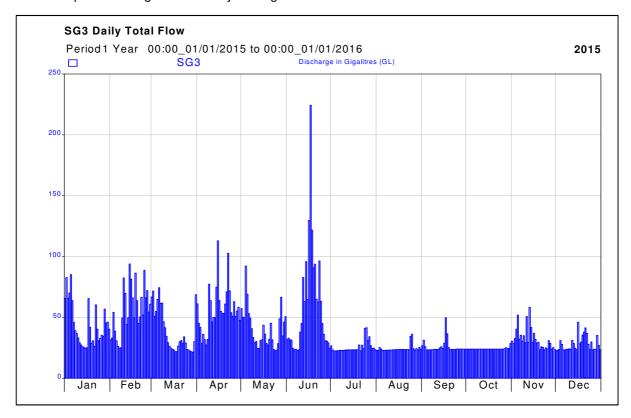


Figure 5-17 Total daily flow (GL) at SG3 for 2015

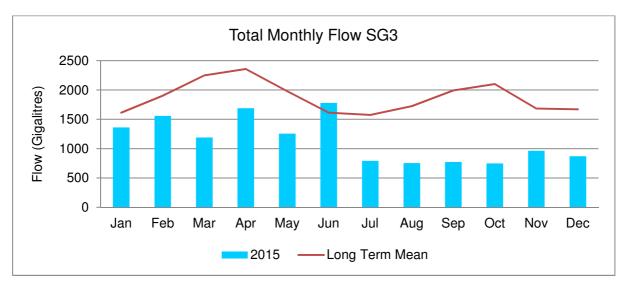


Figure 5-18 Total monthly flow (GL) at SG3 during 2015 compared to long-term monthly means

5.3 Background Water Quality and TVs

This section presents the water quality data collected from reference sites throughout the history of the operation and established trigger values for use in the risk assessment in Section 7. The sites are grouped into Local Sites, Upper River, Lower River and Lake Murray and Off-River Water Bodies (ORWBs).

Data from all groups except local creeks are used to develop risk assessment criteria for water quality indicators in each of the respective groups. Risk assessment TVs are derived from the reference site monitoring data from the previous 24 months and describe the current non-mine related conditions of the receiving environment.

Data from local reference sites are presented only to describe the quality of non-mine related contributions to the receiving environment, they are not used to derive receiving environment TVs.

5.3.1 Local Sites

Local Sites comprise the small highland creeks within the Porgera River catchment that are not affected by the mining operation. Water from these creeks joins with discharge from the mine to form the Porgera River, and so the quality of water within these creeks is important for providing the full context of inputs that influence downstream environmental conditions.

The site names are presented in Table 5-3 and median water quality data for 2015 are presented in Table 5-4 and shown in Figure 5-19 to Figure 5-48, with trends from 2011 - 2015 shown in Table 5-5.

Table 5-3 Local site monitoring points

Site Type	Site Name
Local sites	Aipulungu River upstream of lime plant and quarry
	Waile Dam
	Kaiya River upstream of Anjolek erodible dump
	Pongema River

Water quality within local creeks is dominated by the surrounding limestone geology and relatively low level of development within the catchments. The pH is alkaline and typical of limestone geology, while TSS is generally low but has the potential to reach elevated levels particularly under high rainfall periods due to landslides and erosion within the steep valley catchment, and particularly in the Kaiya River catchment (Kaiya US Anjolek) and Aipulungu River. Metal concentrations generally are low, however, background concentrations of mercury and selenium are at detectable levels throughout the historical record.

A summary of the trends between 2011 and 2015 are shown in Table 5-5, details of the statistical analysis for long-term trends are provided in Appendix C. The analysis shows that alkalinity at Aipulungu U/S Lime Plant has increased and Waile Creek alkalinity and dissolved zinc have increased. All other elements at all sites have either reduced or remained constant over the same period.

Table 5-4 Local Reference Site Water Quality 2015 median values (µg/L except where shown)

Parameter	Aipulungu U/S Lime Plant	Waile Dam	Kaiya Riv U/S Anj Dump	Pongema	
pH^	7.8	7.8	7.5	7.9	
WAD-CN*	0.20	0.20	0.20	0.20	
Sulfate*	1.0	1.0	12	2.0	
ALK-T*	107	88	75	126	
TSS*	18	13	85	35	
Hardness*	110	79	67	134	
Ag-D	0.05	0.05	0.05	0.05	
Ag-T	0.05	0.05	0.05	0.05	
As-D	0.15	0.16	0.24	0.18	
As-T	0.19	0.20	0.60	0.24	
Cd-D	0.05	0.05	0.05	0.05	
Cd-T	0.05	0.05	0.05	0.05	
Cr-D	0.15	0.15	0.10	0.15	
Cr-T	0.35	0.20	1.8	0.71	
Cu-D	0.59	0.50	0.62	0.50	
Cu-T	0.58	0.50	1.4	0.71	
Fe-D	16	54	23	10	
Fe-T	140	165	1960	455	
Hg-D	0.05	0.05	0.05	0.05	
Hg-T	0.05	0.05	0.05	0.05	
Ni-D	0.50	0.50	0.50	0.50	
Ni-T	0.50	0.50	1.7	0.56	
Pb-D	0.10	0.10	0.10	0.10	
Pb-T	0.10	0.10	0.80	0.17	
Se-D	0.20	0.20	0.20	0.20	
Se-T	0.20	0.20	0.25	0.20	
Zn-D	2.2	3.1	2.4	2.1	
Zn-T	0.82	0.78	6.5	2.6	

[^] std units, * mg/L, D = Dissolved fraction, T = Total

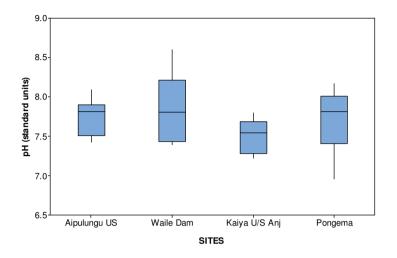


Figure 5-19 pH in local creek runoff 2015

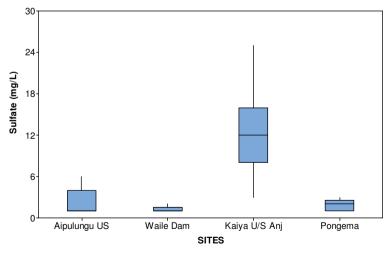


Figure 5-21 Sulfate in local creek runoff 2015

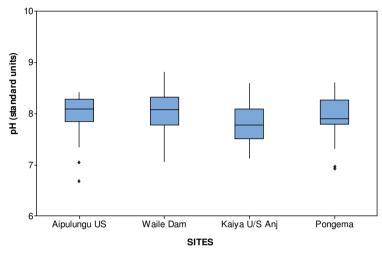


Figure 5-20 pH in local creek runoff 2011 - 2015

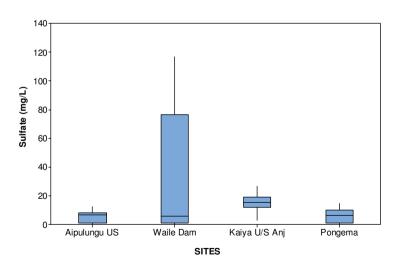


Figure 5-22 Sulfate in local creek runoff 2011 - 2015

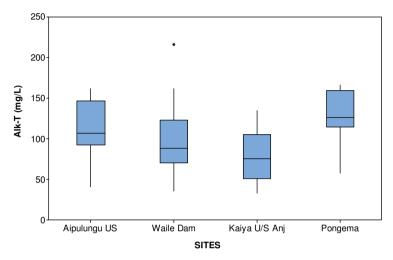


Figure 5-23 Alkalinity in local creek runoff 2015

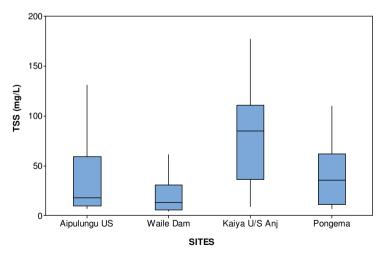


Figure 5-25 TSS in local creek runoff 2015

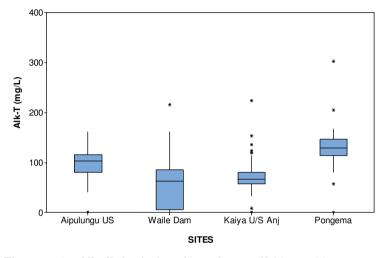


Figure 5-24 Alkalinity in local creek runoff 2011 - 2015

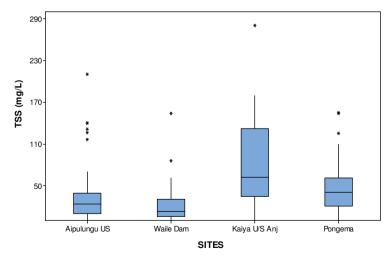


Figure 5-26 TSS in local creek runoff 2011 - 2015

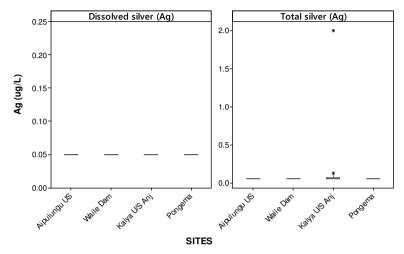


Figure 5-27 Dissolved and total silver in local creek runoff 2015

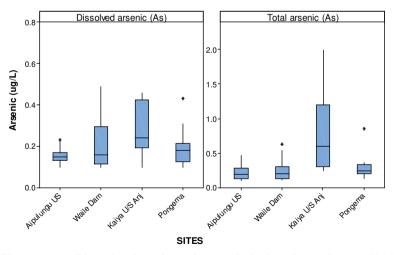


Figure 5-29 Dissolved and total arsenic in local creek runoff 2015

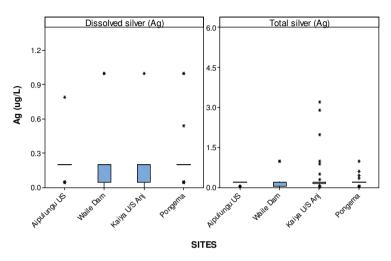


Figure 5-28 Dissolved and total silver in local creek runoff 2011 - 2015

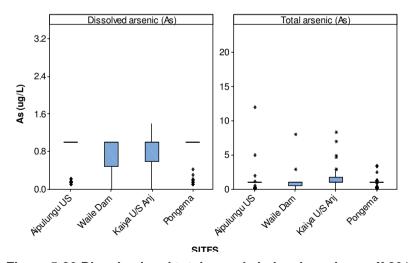


Figure 5-30 Dissolved and total arsenic in local creek runoff 2011 - 2015

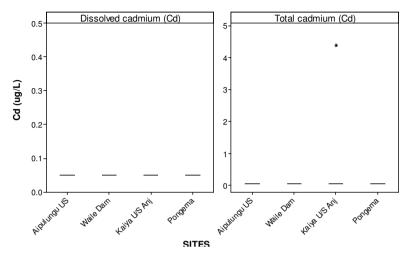


Figure 5-31 Dissolved and total cadmium in local creek runoff 2015

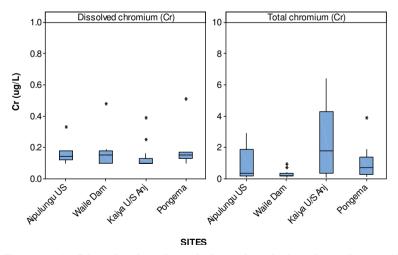


Figure 5-33 Dissolved and total chromium in local creek runoff 2015

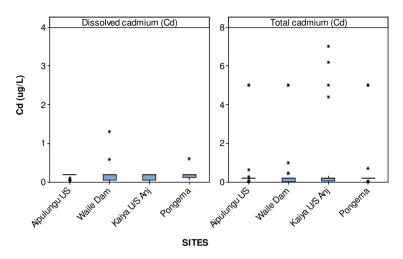


Figure 5-32 Dissolved and total cadmium in local creek runoff 2011 - 2015

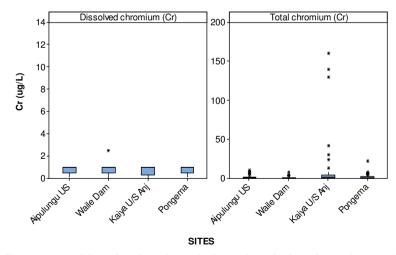


Figure 5-34 Dissolved and total chromium in local creek runoff 2011 - 2015

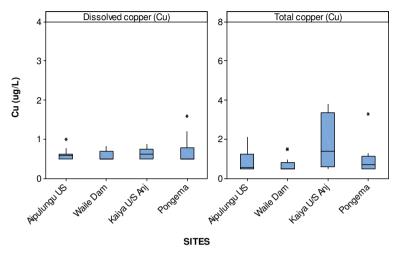


Figure 5-35 Dissolved and total copper in local creek runoff 2015

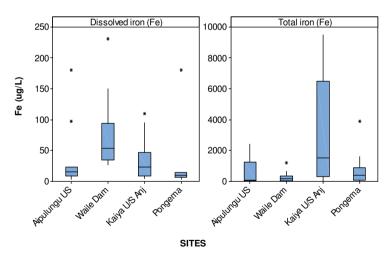


Figure 5-37 Dissolved and total iron in local creek runoff 2015

Figure 5-36 Dissolved and total copper in local creek runoff 2011 - 2015

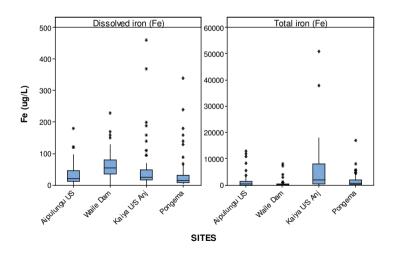


Figure 5-38 Dissolved and total iron in local creek runoff 2011 - 2015

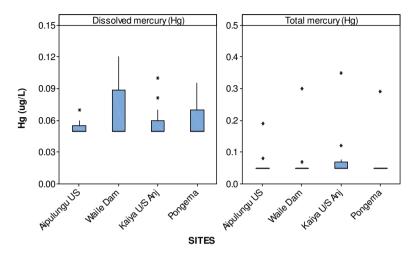


Figure 5-39 Dissolved and total mercury in local creek runoff 2015

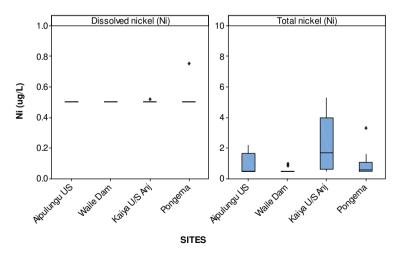


Figure 5-41 Dissolved and total nickel in local creek runoff 2015

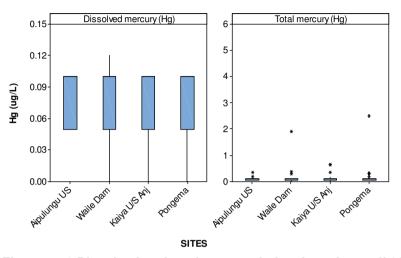


Figure 5-40 Dissolved and total mercury in local creek runoff 2011 - 2015

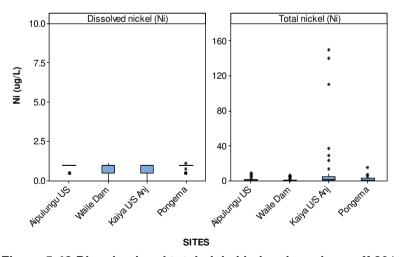


Figure 5-42 Dissolved and total nickel in local creek runoff 2011 - 2015

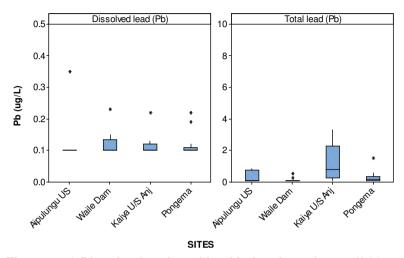


Figure 5-43 Dissolved and total lead in local creek runoff 2015

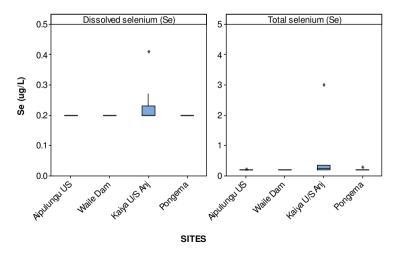


Figure 5-45 Dissolved and total selenium in local creek runoff 2015

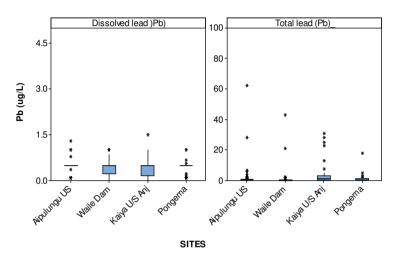


Figure 5-44 Dissolved and total lead in local creek runoff 2011 - 2015

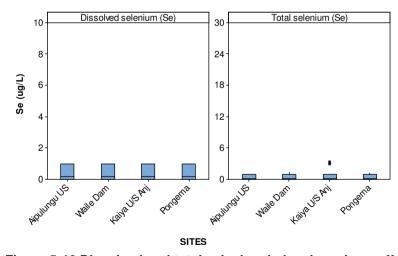


Figure 5-46 Dissolved and total selenium in local creek runoff 2011 - 2015

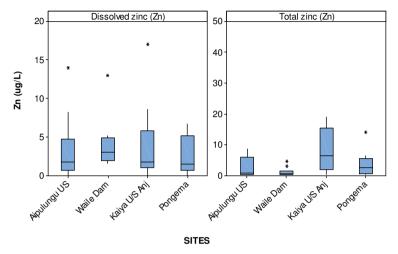


Figure 5-47 Dissolved and total zinc in local creek runoff 2015

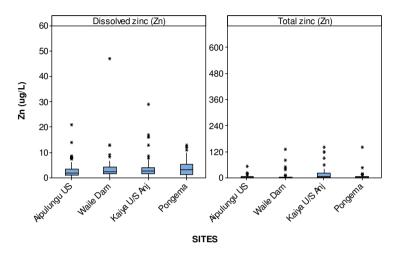


Figure 5-48 Dissolved and total zinc in local creek runoff 2011 - 2015

Table 5-5 Trends of water quality in mine area runoff reference sites 2011 - 2015 as tested by Spearman Rank Correlation

Parameter	Aipulungu U/S Lime Plant	Waile Dam	Kaiya Riv U/S Anj Dump	Pongema
pH^				
WAD-CN*				
Sulfate*				
ALK-T*				
TSS*				
Hardness*				
Ag-D				
Ag-T				
As-D				
As-T				
Cd-D				
Cd-T				
Cr-D				
Cr-T				
Cu-D				
Cu-T				
Fe-D				
Fe-T				
Hg-D				
Hg-T				
Ni-D				
Ni-T				
Pb-D				
Pb-T				
Se-D				
Se-T				
Zn-D				
Zn-T				
	ased or no change	over time		
Increas	sed over time			

 $^{^{\}wedge}$ std units, * mg/L, D - Dissolved fraction, T - Total

5.3.2 Upper and Lower River - Background Water Quality and TVs

This section presents pre-mine baseline water quality data at upper and lower river test sites and data from the most recent 24 months from upper and lower river reference sites. Baseline data were collected from the test sites prior to the commencement of mining.

The purpose of this section is to establish TVs for supporting the risk assessment stage by describing the water quality conditions at sites that are not influenced by the mining operation and comparing them against relevant guidelines for protection of environmental values.

Water quality TVs for the upper and lower river reference sites are presented in Table 5-6 and Table 5-7 respectively. In accordance with the methodology outlined in Section 2, the TVs are derived by comparing the 80%ile of the baseline data at test sites, the 80%ile of the most recent 24-month data from all of the reference sites, and the ANZECC/ARMCANZ (2000) default guideline for 95% species protection, and then adopting the highest of the three values for each analyte.

Baseline data in the upper river exhibited elevated pH, sulfate, alkalinity, concentrations of TSS, total and dissolved arsenic, copper, iron, mercury, lead and zinc compared to the upper river reference sites. This indicates that the catchment which hosts the Porgera deposit, and in which the test sites are located, has naturally elevated pre-mine concentrations of dissolved and total metals compared to the regional reference sites. The reference TV is higher than the ANZECC/ARMCANZ (2000) guideline for dissolved silver as no baseline data for silver are available. The ANZECC/ARMCANZ (2000) guideline values are higher than the baseline or reference TVs for dissolved arsenic, cadmium, chromium, mercury, lead and selenium. The baseline TVs are higher than the reference TV and ANZECC/ARMCANZ (2000) guideline values for TSS, dissolved copper, nickel and zinc.

In the lower river, baseline data exhibited higher pH, sulfate, concentrations of TSS, total and dissolved arsenic, cadmium, chromium, copper, iron, mercury, nickel, lead and zinc than the lower river reference sites. This also indicates that the catchment which hosts the Porgera deposit, and in which the test sites are located, has naturally elevated pre-mine concentrations of dissolved and total metals compared to the regional reference sites. The reference TV is higher than the ANZECC/ARMCANZ (2000) guideline for dissolved silver and cadmium, no baseline data for silver are available. The ANZECC/ARMCANZ (2000) guideline values are higher than the baseline or reference TVs for dissolved arsenic, chromium, mercury, lead, selenium and zinc. The baseline TVs are higher than the reference TV and ANZECC/ARMCANZ (2000) guideline values for dissolved copper, iron and nickel.

Table 5-6 Summarised water quality for upper river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)

	UpRiv Ref 24 month (n=113)		SG1	Baseline (ı	n=15)	SG2	Baseline (ı	n=24)	SG3	Baseline (ı	n=25)	Baselin	ne SG1,SG2 (n=64)	2 & SG3	ANZECC / ARMCANZ 95%	UpRiv TV	
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile	ANIVICANZ 95 /6	1 V
pH^	7.2	7.5	7.7	7.8	8.0	8.1	7.7	7.9	8.2	7.8	7.9	8.1	7.8	7.9	8.1	6.0-8.0	6.0-8.1
Sulfate*	3	9	21	10	12	16	18	21	31	28	30	34	14.8	22.2	32.1		
Alk-T*	63	89	121	110	117	122	110	150	263	96	106	124	106	117	169		
TSS*	22	112	636	222	401	2496	258	1462	4874	743	1428	2663	258	1188	2837	NA	2837
Hardness*	61	86	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ag-D	0.05	0.05	0.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.20
Ag-T	0.05	0.05	0.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
As-D	0.4	0.6	1.0	ND	ND	ND	1.7	1.7	1.7	0.5	0.5	1.2	0.5	0.5	1.7	24	24
As-T	0.7	1.4	6.3	1.8	3.5	11	2.0	3.7	10	4.2	9	15	2	5.5	13		
Cd-D	0.05	0.05	0.20	ND	ND	ND	0.05	0.05	0.05	ND	ND	ND	0.05	0.05	0.05	0.4**	0.4
Cd-T	0.05	0.07	0.20	0.2	0.2	0.4	0.2	0.2	0.4	0.2	0.6	1	0.2	0.2	8.0		
Cr-D	0.2	0.3	0.5	ND	ND	ND	133	133	133	ND	ND	ND	0.5	0.5	0.5	1.0	1.0
Cr-T	0.8	6.5	33	ND	ND	ND	0.5	0.5	0.5	ND	ND	ND	133	133	133		
Cu-D	0.5	0.8	1.0	1.1	1.2	1.4	0.56	0.9	7.2	1	1.7	4.3	0.98	1.4	4.1	1.4	4.1
Cu-T	0.9	3.5	27	5.2	15	66	8.8	41	146	7.4	36	68	7	29.4	81.8		
Fe-D	5.7	11	31	75	75	75	57	75	75	75	75	75	75	75	75	NA	75
Fe-T*	0.4	5.5	40	14	17	104	13	40	203	23	64	118	13	44	148		
Hg-D	0.05	0.05	0.05	ND	ND	ND	0.2	0.2	0.2	0.05	0.05	0.05	0.08	0.125	0.17	0.6	0.6
Hg-T	0.05	0.05	0.09	0.10	0.10	0.16	0.2	0.2	0.2	0.1	0.1	0.1	0.10	0.10	0.10		
Ni-D	0.5	0.5	1.0	13	15	15	5.7	9.1	15	11	15.7	23	10.3	15	21	20**	21
Ni-T	1.0	6.4	39	16	16	16	20	20	179	10	12	94	12	20	90		
Pb-D	0.10	0.10	0.50	0.30	0.30	0.64	0.26	0.30	0.38	0.3	0.3	1.3	0.3	0.3	1	8.3**	8.3
Pb-T	0.41	2.00	13.6	4.36	12	160	6.1	18	139	3.6	23	59	4.4	18.8	82.2		
Se-D	0.20	0.20	1.00	ND	ND	ND	0.07	0.07	0.07	ND	ND	ND	0.07	0.07	0.07	11	11
Se-T	0.20	0.44	1.00	ND	ND	ND	0.25	0.25	0.25	ND	ND	ND	0.25	0.25	0.25		
Zn-D	1.0	1.6	3.1	0.18	0.2	0.42	0.28	0.40	0.64	0.8	4.3	25	0.48	1.4	20	15**	20
Zn-T	1.8	12	89	25	77	374	30	79	623	45	131	249	26	103	376		

[^] std units, * mg/L, D - Dissolved fraction, T - Total, **Hardness modified, NA - Not applicable, ND - Not determined

Baseline data were data collected from the test sites prior to mine operations commencing

Table 5-7 Summarised water quality for lower river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)

	LwRiv F	Ref 24 Montl	n (n=30)	Base	eline SG4 (n	=36)	ANZECC/	LwRiv TV
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	ARMCANZ 95%	
pH^	7.0	7.4	7.6	7.8	8.0	8.1	6.0-8.0	6.0-8.2
Sulfate*	2	5	15	9.5	15	18		
ALK-T*	55	78	105	83	93	101		
TSS*	3	37	589	326	638	983	NA	983
Hardness*	26	56	73	ND	ND	ND		
Ag-D	0.05	0.05	0.20	ND	ND	ND	0.05	0.20
Ag-T	0.1	0.1	0.2	ND	ND	ND		
As-D	0.3	0.9	1.0	0.6	0.7	8.0	24	24
As-T	0.3	1.0	1.7	3.5	5.5	8.0		
Cd-D	0.05	0.05	0.20	0.07	0.08	0.09	0.20	0.20
Cd-T	0.05	0.05	0.20	0.6	0.9	1.0		
Cr-D	0.11	0.23	0.50	0.5	0.5	0.5	1.0	1.0
Cr-T	0.4	1.2	5.5	18	34	46		
Cu-D	0.5	1.0	1.0	0.5	0.9	1.4	1.4	1.4
Cu-T	1.0	1.3	4.1	8.0	18	26		
Fe-D	11	33	73	0.64	75	75	NA	75
Fe-T*	0.3	0.9	4.5	17	37	49		
Hg-D	0.05	0.05	0.07	ND	ND	ND	0.60	0.60
Hg-T	0.05	0.05	0.10	0.1	0.1	0.1		
Ni-D	0.5	0.6	1.0	3.6	10	15	11	15
Ni-T	0.7	1.4	5.6	10	23	24		
Pb-D	0.1	0.2	0.5	0.3	0.5	0.7	2.8	2.8
Pb-T	0.1	0.5	1.3	5.6	10.4	19		
Se-D	0.2	0.2	1.0	0.2	0.3	0.3	11	11
Se-T	0.2	0.2	1.0	0.2	0.2	0.5		
Zn-D	1.8	3.3	5.8	0.5	1.0	2.9	8	8
Zn-T	1.0	2.3	11	28	68	94		

[^] std units, * mg/L, D - Dissolved fraction, T - Total, **Hardness modified, NA - Not applicable, ND - Not determined

Baseline data were data collected from the test sites prior to mine operations commencing

PJV Annual Environment Report 2015

An analysis of the trend of median values for pH, TSS and total and dissolved metals at upper and lower river reference sites from 2011 to 2015 is presented in Table 5-8 and Table 5-9 respectively and shows that all parameters either decreased or did not change over that time period.

Table 5-8 Trends for water quality at upper river reference sites 2011 - 2015 as determined by Spearman Rank correlation against time

Water Quality	Downwater	Spearman's	P-Value	Trond (0044 0045)
Site	Parameter	rho	(P=0.05)	Trend (2011 – 2015)
	рН	-0.531	<0.001	Decreased over time
	TSS	-0.230	< 0.001	Decreased over time
	Ag-D*	-0.813	< 0.001	No change over time
	Ag-T*	-0.700	< 0.001	No change over time
	As-D*	-0.792	< 0.001	No change over time
	As-T	-0.269	< 0.001	Decreased over time
	Cd-D*	-0.809	< 0.001	No change over time
	Cd-T*	-0.737	< 0.001	No change over time
	Cr-D*	-0.881	< 0.001	No change over time
	Cr-T*	-0.167	0.012	No change over time
Upper River Ref	Cu-D*	-0.619	< 0.001	No change over time
(Trand of annual	Cu-T	-0.198	0.003	Decreased over time
(Trend of annual Medians from	Fe-D	-0.111	0.099	No change over time
2011 - 2015)	Fe-T	-0.199	0.003	Decreased over time
,	Hg-D*	-0.801	<0.001	No change over time
	Hg-T*	-0.551	<0.001	No change over time
	Ni-D*	-0.742	< 0.001	No change over time
	Ni-T	-0.195	0.004	Decreased over time
	Pb-D*	-0.770	<0.001	No change over time
	Pb-T	-0.254	<0.001	Decreased over time
	Se-D*	-0.887	<0.001	No change over time
	Se-T*	-0.803	<0.001	No change over time
	Zn-D	-0.354	<0.001	Decreased over time
	Zn-T	-0.211	0.002	Decreased over time

D - Dissolved fraction, T - Total fraction

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table 5-9 Trends for water quality at lower river reference sites 2011 - 2015 as determined by Spearman Rank correlation against time

Water Quality	Davamatav	Spearman's	P-Value	Dowformones Assessment
Site	Parameter	rho	(P=0.05)	Performance Assessment
	рН	-0.319	0.009	Decreased over time
	TSS	-0.393	0.001	Decreased over time
	Ag-D*	-0.711	<0.001	No change over time
	Ag-T*	-0.684	<0.001	No change over time
	As-D*	-0.542	<0.001	No change over time
	As-T*	-0.419	< 0.001	No change over time
	Cd-D*	-0.711	< 0.001	No change over time
	Cd-T*	-0.558	< 0.001	No change over time
	Cr-D*	-0.823	<0.001	No change over time
	Cr-T	-0.214	0.059	No change over time
Lower River Ref	Cu-D*	-0.420	<0.001	No change over time
(Trend of annual	Cu-T	-0.478	<0.001	Decreased over time
Medians from	Fe-D	0.211	0.060	No change over time
2011 - 2015)	Fe-T	-0.451	< 0.001	Decreased over time
,	Hg-D*	-0.764	<0.001	No change over time
	Hg-T*	-0.538	<0.001	No change over time
	Ni-D*	-0.678	< 0.001	No change over time
	Ni-T	-0.424	<0.001	Decreased over time
	Pb-D*	-0.680	<0.001	No change over time
	Pb-T	-0.478	<0.001	Decreased over time
	Se-D*	-0.919	<0.001	No change over time
	Se-T*	-0.892	<0.001	No change over time
	Zn-D	-0.115	0.310	No change over time
	Zn-T	-0.415	<0.001	Decreased over time

D - Dissolved fraction, T - Total fraction

5.3.3 Lake Murray and ORWBs – Background Water Quality and TVs

The North Lake Murray sampling site was selected as the most appropriate reference site for the ORWBs and the central and southern end of the lake. The 80%ile value from North Lake Murray site data set and the 80%ile value from the whole of Lake Murray baseline data set have been compared with the ANZECC/ARMCANZ (2000) default guideline for 95% species protection, and the highest of the three values adopted for each analyte. The results are presented in Table 5-10.

Reference site TVs are higher than the baseline TV and ANZECC/ARMCANZ (2000) guideline value for TSS and dissolved silver. The baseline TV is higher than the reference TV and ANZECC/ARMCANZ (2000) guideline value for dissolved cadmium and dissolved iron. The ANZECC/ARMCANZ (2000) guideline value is higher than the baseline TV and the reference TV for dissolved arsenic, chromium, copper, mercury, nickel, lead, selenium and zinc.

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table 5-10 Summarised water quality data for Lake Murray and ORWB river test sites for baseline and reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site. ANZECC/ARMCANZ (2000) default TV for 95%species protection provided for comparison (μg/L except where indicated)

	NORTHE	RN LAKE M (n=20)	IURRAY	Lake Mu	rray (LM1) (n=10)	Baseline	Lake Mu	rray (LM2) (n=10)	Baseline	Baseline (n=20)			ANZECC/ ARMCANZ 95%	LMY ORWBs
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile	AITWOAN2 3370	TV
pH^	5.2	5.4	5.6	6.3	6.4	6.4	6.3	6.4	6.6	6.3	6.4	6.6	6.0-8.0	5.3-8.0
Sulfate	1.0	1.0	1.2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
ALK-T*	5.9	8.5	11.7	7.7	8.1	8.8	7.9	8.1	8.5	7.8	8.1	8.7		
TSS*	8	16	23	6.0	7.0	9.0	4.6	6.0	8.2	5.4	6.5	9.0	NA	23
Hardness*	6.8	7.0	7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ag-D	0.05	0.05	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05
Ag-T	0.05	0.05	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND		
As-D	0.16	0.17	0.20	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	24	24
As-T	0.3	0.5	0.7	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
Cd-D	0.05	0.05	0.05	0.1	0.2	0.8	0.1	0.1	0.64	0.1	0.1	0.72	0.20	0.72
Cd-T	0.05	0.13	0.264	2.0	4.1	5.1	0.4	1.1	1.3	0.7	1.4	4.8		
Cr-D	0.17	0.19	0.27	0.1	0.1	0.44	0.1	0.1	0.2	0.1	0.1	0.4	1.0	1.0
Cr-T	0.7	0.9	1.3	0.1	0.1	0.4	0.1	0.25	1.3	0.1	0.15	0.6		
Cu-D	0.6	0.6	0.8	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	1.4	1.4
Cu-T	1.0	1.2	1.4	0.26	0.4	0.8	0.1	0.3	0.52	0.1	0.3	0.7		
Fe-D	84	110	124	138	255	342	166	230	324	148	250	340	NA	340
Fe-T	436	940	2076	762	1005	1072	898	945	1024	898	980	1072		
Hg-D	0.05	0.065	0.132	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	0.16
Hg-T	0.05	0.05	0.06	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
Ni-D	0.5	0.6	0.7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	11	11
Ni-T	0.9	1.0	1.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Pb-D	0.1	0.1	0.1	0.2	0.2	0.7	0.2	0.2	0.62	0.2	0.2	0.7	3.4	3.4
Pb-T	0.4	0.5	0.6	0.5	1.0	1.9	0.4	0.8	1.4	0.38	0.9	1.7		
Se-D	0.2	0.2	0.2	0.7	0.8	0.9	0.7	0.7	8.0	0.7	0.7	0.9	11	11
Se-T	0.2	0.33	0.606	0.9	0.9	0.9	0.7	0.8	1.0	0.7	0.9	1.0		
Zn-D	0.9	1.5	4.0	0.05	0.05	0.14	0.05	0.5	1.0	0.05	0.08	0.8	8.0	8.0
Zn-T	1.6	2.7	4.1	1.2	2.0	2.7	1.3	2.0	2.88	1.3	2.0	2.8		

[^] std units, * mg/L, D - Dissolved fraction, T - Total, **Hardness modified, NA - Not applicable, ND - Not determined

Baseline data were data collected from the test sites prior to mine operations commencing

An analysis of the trend of median values for pH, TSS and total and dissolved metals at Lake Murray and ORWB reference sites from 2011 to 2015 is presented in Table 5-11 and shows that the concentrations of TSS, total copper, total iron, total nickel and total zinc increased over the time period, all other parameters either decreased or did not change over that time period.

Table 5-11 Trends for water quality Lake Murray and ORWBs 2011 - 2015 as determined using Spearman Rank Correlation against time

Water Quality	B	Spearman's	P-Value	Tuesd (0044 0045)
Site	Parameter	rho	(P=0.05)	Trend (2011 – 2015)
	рН	-0.370	0.062	No change over time
	TSS	0.877	<0.001	Increased over time
	Ag-D*	-0.779	<0.001	No change over time
	Ag-T*	-0.746	<0.001	No change over time
	As-D*	-0.235	0.247	No change over time
	As-T	-0.936	<0.001	Decreased over time
	Cd-D*	-0.776	< 0.001	No change over time
	Cd-T*	-0.602	0.001	No change over time
	Cr-D*	-0.548	0.004	No change over time
Loko Murroy and	Cr-T	-0.413	0.036	Decreased over time
Lake Murray and ORWB Ref	Cu-D	0.010	0.963	No change over time
0111121101	Cu-T	0.682	<0.001	Increased over time
(Trend of annual	Fe-D	-0.351	0.079	No change over time
Medians from 2011 -	Fe-T	0.522	0.006	Increased over time
2015)	Hg-D*	-0.675	<0.001	No change over time
	Hg-T*	-0.840	< 0.001	No change over time
	Ni-D*	-0.156	0.448	No change over time
	Ni-T	0.482	0.013	Increased over time
	Pb-D*	-0.686	< 0.001	No change over time
	Pb-T	-0.022	0.915	No change over time
	Se-D*	-0.553	0.008	No change over time
	Se-T*	-0.947	<0.001	No change over time
	Zn-D	0.387	0.051	No change over time
	Zn-T	0.908	<0.001	Increased over time

D - Dissolved fraction, T - Total fraction

5.4 Background Benthic Sediment Quality and TVs

This section presents the sediment quality data from local sites, and reference data for upper rivers, lower river and Lake Murray and ORWBs.

Data from all groups except local creeks are used to develop risk assessment criteria for sediment quality indicators in each of the respective groups. Data from local reference sites are presented only to describe the quality of non-mine related contributions to the receiving environment, they are not used to derive receiving environment TVs.

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

The weak-acid extractable (WAE) metal concentrations from the whole sediment fraction have been used to develop the TVs. No baseline data exist for WAE metals in whole sediment. The WAE method is designed to better mimic the ability of an organism's digestive system to liberate metals from sediment, and therefore represents the bioavailable fraction of metals within the sediment which have the potential to cause toxicity. The total digest (TD) method uses a much stronger acid to liberate metals from the sediment and is likely to overestimate the concentration of metals to which an organism would be exposed from digesting the sediment, but TD metals are presented here for comparison with WAE metals.

5.4.1 Local Sites

Local Sites comprise the small highland creeks within the Porgera River catchment that are not affected by the mining operation. As is the case for water at these sites, sediment from these creeks mixes with the discharge from the mine to form the Porgera River, and so the quality of sediment within these creeks is important for providing the full context of inputs that influence downstream environmental conditions. Sediment monitoring began at local sites in 2015, and the results are presented in Table 5-12.

Sediment quality within local creeks is dominated by the surrounding limestone geology and relatively low level of development within the catchments. The WAE and TD concentrations of all metals are comparable to other regional reference sites, indicating that the local creeks do not contribute significant metals in sediment to the river system downstream of the mine.

Table 5-12 Local Sites Sediment Quality 2015 (mg/kg whole sediment)

		Pongema	1		Kaiya US		A	ipulungu U	S
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	20%ile	Median	80%ile
Ag-WAE	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ag-TD	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
As-WAE	0.89	1.1	1.4	1.5	1.6	1.9	0.98	1.1	1.1
As-TD	3.7	4.0	4.8	6.3	7.1	8.1	2.6	2.7	2.9
Cd-WAE	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Cd-TD	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Cr-WAE	2.9	3.2	4.4	1.1	1.3	4.9	3.6	4.0	7.2
Cr-TD	16	18	24	23	25	29	27	32	32
Cu-WAE	2.3	2.9	3.8	4.3	5.6	8.8	8.7	8.8	10.4
Cu-TD	7.1	7.6	8.8	21	26	33	13	15	16
Hg-WAE	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Hg-TD	0.02	0.02	0.05	0.05	0.06	0.09	0.03	0.04	0.04
Ni-WAE	2.0	2.6	3.1	3.5	4.1	11	5.8	6.8	9.1
Ni-TD	9.8	10.9	15	22	29	34	19	23	24
Pb-WAE	3.2	4.3	5.2	8.3	9.5	13	4.4	5.1	5.3
Pb-TD	4.6	6.5	7.8	14	16	19	6.0	6.4	7.3
Se-WAE	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Se-TD	0.5	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5
Zn-WAE	13	16	19	18	22	48	26	29	39
Zn-TD	33	43	55	91	110	118	66	69	77

WAE - Weak acid extractable, TD - Total digest

5.4.2 Upper and Lower River – Background Sediment Quality and TVs

This section presents a comparison of the benthic sediment quality data collected from upper and lower river reference sites over the past 24 months and the ANZECC/ARMCANZ (2000) interim sediment quality guidelines for aquatic ecosystem protection. Baseline TD metals on the <63µm fraction are not directly comparable to the WAE metals in whole sediment, but are presented for comparison. TD metals in the <63µm fraction typically exhibit higher concentrations of metals than the WAE metals in whole sediment fraction as the finer fraction <63µm fraction has a larger relative surface area than the coarser whole sediment fraction, which creates a larger number of adsorption sites per unit mass of sediment In addition, the TD method uses a much stronger acid than the WAE method to digest the metals from the particles during analysis, thereby resulting in a higher concentration of extractable metals.

The purpose of this section is to establish TVs for supporting the risk assessment stage by describing the sediment quality conditions at sites that are not influenced by the mining operation and comparing them against relevant guidelines for protection of environmental values.

In accordance with the methodology outlined in Section 2, the TVs are derived by comparing the 80%ile of the most recent 24-months data from all of the reference sites and the ANZECC/ARMCANZ (2000) ISQG-low, and then adopting the higher of the two values for each analyte. Sediment quality risk assessment TVs from the upper and lower river reference sites are presented in Table 5-13 and Table 5-14 respectively.

With the exception of nickel in the upper rivers, the ANZECC ISQG-low is higher than the reference TV for all metals within the upper and lower rivers. ANZECC/ARMCANZ (2000) does not provide a guideline value for selenium, so the reference TV for selenium has been adopted in the upper and lower rivers.

Table 5-13 Summarised sediment quality data for upper river reference sites for previous 24 months. (mg/kg whole sediment)

	UpRiv	vs Ref 24 n (n = 107)	nonth	UpRivs	Baseline (ANZECC / ARMCANZ	Porgera UpRiv	
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	ISQG-Low	SED TV
Ag-WAE	0.5	0.5	0.5	ND	ND	ND	1	1
Ag-TD	0.5	0.5	0.5	ND	ND	ND		
As-WAE	1.4	1.8	2.2	ND	ND	ND	20	20
As-TD	8.9	11	13	6.5	10	14		
Cd-WAE	0.5	0.5	0.5	ND	ND	ND	1.5	1.5
Cd-TD	0.5	0.5	0.5	0.06	0.08	0.10		
Cr-WAE	1.5	2.8	6.0	ND	ND	ND	80	80
Cr-TD	21	35	130	28	31	33		
Cu-WAE	3.6	7.1	11	ND	ND	ND	65	65
Cu-TD	15	27	46	133	175	217		
Hg-WAE	0.01	0.01	0.01	ND	ND	ND	0.15	0.15
Hg-TD	0.03	0.04	0.07	ND	ND	ND		
Ni-WAE	3.9	5.5	27	ND	ND	ND	21	27
Ni-TD	22	36	138	23	29	34		
Pb-WAE	5.4	6.6	8.8	ND	ND	ND	50	50
Pb-TD	12	15	19	13	17	20		
Se-WAE	0.50	0.50	0.50	ND	ND	ND	NA	0.50
Se-TD	0.50	0.50	0.53	0.46	0.50	0.54		
Zn-WAE	10	14	29	ND	ND	ND	200	200
Zn-TD	67	90	100	92	113	133		

WAE = Weak Acid Extractable on whole sediment (i.e. the bioavailable fraction); TD = Total Digest on whole sediment; NA = Not applicable; ND = Not determined

Baseline data were data collected from the test sites prior to mine operations commencing

Table 5-14 Summarised sediment quality data for lower river reference sites for previous 24 months. ANZECC/ARMCANZ (2000) ISQG-Low values are provided for comparison (mg/kg whole sediment)

	I	LwRiv REF			Baseline (<63μm)	ANZECC / ARMCANZ	Porgera LwRiv	
Parameter	20%ile	Median	80%ile	20%ile	20%ile Median 80%ile		ISQG-Low	Sed TV	
Ag-WAE	0.5	0.5	0.5	ND	ND	ND	1.0	1.0	
Ag-TD	0.5	0.5	0.5	ND	ND	ND			
As-WAE	0.5	1.0	1.9	ND	ND	ND	20	20	
As-TD	1.6	4.0	6.2	2.8	10	14			
Cd-WAE	0.5	0.5	0.5	ND	ND	ND	1.5	1.5	
Cd-TD	0.5	0.5	0.5	2.4	2.4	2.4			
Cr-WAE	2.6	7.1	8.9	ND	ND	ND	80	80	
Cr-TD	45	55	59	12	12	12			
Cu-WAE	3.5	3.9	6.7	ND	ND	ND	65	65	
Cu-TD	10	14	21	24	24	24			
Hg-WAE	0.01	0.01	0.01	ND	ND	ND	0.15	0.15	
Hg-TD	0.01	0.02	0.06	0.3	0.6	0.9			
Ni-WAE	3.6	12	21	ND	ND	ND	21	21	
Ni-TD	54	62	71	38	38	38			
Pb-WAE	2.8	3.8	5.9	ND	ND	ND	50	50	
Pb-TD	5.7	6.2	7.1	22	22	22			
Se-WAE	0.5	0.5	0.5	ND	ND	ND	NA	0.5	
Se-TD	0.5	0.5	0.5	0.2	0.2	0.2			
Zn-WAE	15	20	41	ND	ND	ND	200	200	
Zn-TD	78	100	136	105	138	190			

WAE - Weak acid extractable, TD - Total digest

Baseline data were data collected from the test sites prior to mine operations commencing

An analysis of the trends of median values for total and WAE metals at the upper river reference sites from 2013 to 2015 is presented in Table 5-15 and shows that the concentrations of WAE arsenic, WAE chromium, WAE copper and WAE zinc increased over the time period, all other parameters either decreased or did not change over that time period. Table 5-16 presents the trends for the lower rivers and shows that the concentrations of TD chromium and WAE zinc increased over the time period, all other parameters either decreased or did not change over that time period.

Table 5-15 Trends for sediment quality for upper river determined by Spearman Rank correlation against time (2013 - 2015)

Sediment Quality	D	Spearman's	P-Value	T
Site	Parameter	rho	(P=0.05)	Trend (2013 – 2015)
	Ag-WAE	≤LOR	≤LOR	No change over time
	Ag-TD	-0.085	0.240	No change over time
	As-WAE	0.328	<0.001	Increased over time
	As-TD	0.031	0.665	No change over time
	Cd-WAE	-0.008	0.929	No change over time
	Cd-TD	-0.022	0.760	No change over time
	Cr-WAE	0.271	0.001	Increased over time
	Cr-TD	-0.011	0.875	No change over time
Upper Riv Ref	Cu-WAE	0.318	<0.001	Increased over time
	Cu-TD	0.050	0.494	No change over time
(Annual medians	Hg-WAE*	-0.306	<0.001	No change over time
from 2013 – 2015)	Hg-TD*	-0.703	<0.001	No change over time
	Ni-WAE	0.303	<0.001	Increased over time
	Ni-TD	-0.045	0.536	No change over time
	Pb-WAE	0.397	<0.001	Increased over time
	Pb-TD	0.001	0.994	No change over time
	Se-WAE	≤LOR	≤LOR	No change over time
	Se-TD	0.115	0.121	No change over time
	Zn-WAE	0.370	<0.001	Increased over time
	Zn-TD	-0.012	0.873	No change over time

WAE - Weak acid extractable, TD - Total digest, LOR - Limit of Reporting

Table 5-16 Trends for sediment quality for lower river determined by Spearman Rank correlation against time (2013 - 2015)

Sediment Quality	Dawamatan	Spearman's	P-Value	Trans (0040 0045)
Site	Parameter	rho	(P=0.05)	Trend (2013 – 2015)
	Ag-WAE	≤LOR	≤LOR	No change over time
	Ag-TD	-0.025	0.844	No change over time
	As-WAE	0.252	0.215	No change over time
	As-TD	0.133	0.297	No change over time
	Cd-WAE	0.178	0.386	No change over time
	Cd-TD	0.211	0.096	No change over time
Lower Riv Ref	Cr-WAE	0.223	0.274	No change over time
(Annual medians	Cr-TD	0.369	0.003	Increased over time
from 2013 – 2015)	Cu-WAE	0.258	0.204	No change over time
,	Cu-TD	0.135	0.291	No change over time
	Hg-WAE*	-0.308	0.126	No change over time
	Hg-TD*	-0.779	< 0.001	No change over time
	Ni-WAE	0.212	0.297	No change over time
	Ni-TD	0.208	0.102	No change over time
	Pb-WAE	0.202	0.322	No change over time

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Sediment Quality	Darameter Speamian 5 F-value		Trend (2013 – 2015)					
Site	Parameter	rho	(P=0.05)	11cha (2013 – 2013)				
	Pb-TD	-0.069	0.591	No change over time				
	Se-WAE	≤LOR	≤LOR	No change over time				
	Se-TD	0.106	0.414	No change over time				
	Zn-WAE	0.469	0.016	Increased over time				
	Zn-TD	0.098	0.445	No change over time				

WAE - Weak acid extractable, TD - Total digest, LOR - Limit of Reporting

5.4.3 Lake Murray and ORWBs – Background Sediment Quality and TVs

Sediment quality TVs for Lake Murray and ORWBs are presented in Table 5-17. TD metals in the <63µm fraction were measured in the baseline samples and are included for reference purposes. TVs are derived by comparing the reference site 80%ile from the previous 24-month WAE data set against the ANZECC/ARMCANZ (2000) ISQG-low and adopting the higher of the two values.

For all metals the ANZECC/ARMCANZ (2000) ISQG-low value is higher than the reference TV. ANZECC/ARMCANZ (2000) does not provide a guideline value for selenium, so the reference TV for selenium has been adopted for the upper and lower rivers.

Table 5-17 Summarised sediment quality data for Lake Murray and ORWBs reference sites for previous 24 months, presenting 20%ile, median and 80%ile of data for each site.

ANZECC/ARMCANZ (2000) ISQG-Low values are provided for comparison (mg/kg whole sediment)

	Northe	ern Lake M (n=13)	lurray	LMY E	Baseline (<	63µm)	ANZECC / ARMCANZ	LMY and ORWBs
Parameter	20%ile	Median	80%ile	20%ile	Median	80%ile	ISQG-Low	TV
Ag-WAE	0.5	0.5	0.5	ND	ND	ND	1.0	1.0
Ag-TD	0.5	0.5	0.5	ND	ND	ND		
As-WAE	0.5	0.6	0.8	ND	ND	ND	20	20
As-TD	2.5	4.4	5.5	1.4	2.7	4.6		
Cd-WAE	0.5	0.5	0.5	ND	ND	ND	1.5	1.5
Cd-TD	0.5	0.5	0.5	1.9	3.2	4.6		
Cr-WAE	5.8	11	16	ND	ND	ND	80	80
Cr-TD	45	50	53	17	19	23		
Cu-WAE	11	13	14	ND	ND	ND	65	65
Cu-TD	20	24	28	27	29	43		
Hg-WAE	0.02	0.05	0.10	ND	ND	ND	0.15	0.15
Hg-TD	0.11	0.12	0.14	0.07	0.10	0.21		
Ni-WAE	7.1	12	18	ND	ND	ND	21	21
Ni-TD	32	37	44	45	49	51		
Pb-WAE	6.8	8.3	9.4	ND	ND	ND	50	50
Pb-TD	12	15	16	23	30	35		
Se-WAE	0.5	0.5	0.5	ND	ND	ND	NA	0.5
Se-TD	0.5	0.5	1.0	0.1	0.1	0.2		
Zn-WAE	29	51	66	ND	ND	ND	200	200
Zn-TD	79	105	120	63	86	116		

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

WAE - Weak acid extractable, TD - Total digest, NA - Not applicable; ND - Not determined Baseline data were data collected from the test sites prior to mine operations commencing

An analysis of the trends of median values for total and WAE metals at the Lake Murray and ORWB reference sites from 2013 to 2015 is presented in Table 5-18 and shows that the concentrations of TD arsenic, WAE chromium, WAE copper, TD copper, WAE nickel, WAE lead, TD lead, TD selenium, WAE zinc and TD zinc increased over the time period, all other parameters did not change over that time period.

Table 5-18 Trends for sediment quality Lake Murray and ORWBs determined by Spearman Rank correlation against time (2013 - 2015)

Sediment Quality	Dawamatan	Spearman's	P-Value	Trans (2010 2015)
Site	Parameter	rho	(P=0.05)	Trend (2013 – 2015)
	Ag-WAE	≤LOR	≤LOR	No change over time
	Ag-TD	≤LOR	≤LOR	No change over time
	As-WAE	0.009	0.975	No change over time
	As-TD	0.720	0.002	Increased over time
	Cd-WAE	≤LOR	≤LOR	No change over time
	Cd-TD	≤LOR	≤LOR	No change over time
	Cr-WAE	0.835	< 0.001	Increased over time
	Cr-TD	0.461	0.083	No change over time
Lake Murray and	Cu-WAE	0.720	0.002	Increased over time
ORWB Ref	Cu-TD	0.813	< 0.001	Increased over time
(Annual medians	Hg-WAE	0.000	1.000	No change over time
from 2013 – 2015)	Hg-TD	-0.335	0.222	No change over time
,	Ni-WAE	0.752	0.001	Increased over time
	Ni-TD	0.406	0.134	No change over time
	Pb-WAE	0.807	< 0.001	Increased over time
	Pb-TD	0.682	0.005	Increased over time
	Se-WAE	0.445	0.097	No change over time
	Se-TD	0.774	0.001	Increased over time
	Zn-WAE	0.578	0.024	Increased over time
	Zn-TD	0.552	0.033	Increased over time

WAE - Weak acid extractable, TD - Total digest, LOR - Limit of Reporting

5.5 Background Tissue Metal Concentrations and TVs

This section presents the tissue metal concentration data collected from baseline sampling at test sites pre-mine and from reference sites over the past 24months. The baseline data are limited to tissue metal concentrations in fish muscle, the reference site data include tissue metal concentrations in fish muscle and prawn abdomen.

Risk assessment TVs for metal concentrations in the tissue of fish and prawns were established by comparing the 80%ile value from the baseline data set, the 80%ile value from the combined reference site data over the most recent 24-month period and US EPA guidelines values where applicable, and then selecting the highest value as the TV.

5.5.1 Upper and Lower River – Background Tissue Metal Concentrations and TVs

In the upper river, baseline concentrations of arsenic, cadmium, copper, nickel, lead and zinc in fish flesh were all higher than the reference TVs. The USEPA guideline for selenium in fish flesh is higher than the reference or baseline TVs. As no baseline or guideline values exist for chromium in fish flesh or for all metals in prawn abdomen, the reference value in these cases has been adopted as the TV, acknowledging the potential for concentrations at reference sites to be influenced by migration of specimens from adjacent exposed sites.

For the lower river, baseline concentrations of arsenic, chromium, copper, nickel, lead and zinc in fish flesh were all higher than the reference TVs. The USEPA guideline for selenium in fish flesh is higher than the reference or baseline TVs. As no baseline or guideline values exist for cadmium in fish flesh or for any metals in prawn abdomen, the reference value in these cases has been adopted as the TV, acknowledging the potential for concentrations at reference sites to be influenced by migration of specimens from adjacent exposed sites.

Tissue metal TVs for the upper and lower river are presented in Table 5-19 to Table 5-22.

Table 5-19 Summarised tissue metal data for upper river reference sites for previous 24 months (As - Cu), presenting median and 80%ile of data for each site (mg/kg wet wt.)

Site	Comple	_	A	s	C	d	Cr		Cı	J
Site	Sample	n	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile
Pori	Fish Flesh	51	0.01	0.02	0.01	0.01	0.01	0.01	0.15	0.20
POII	Prawn Ab	61	0.05	0.07	0.01	0.01	0.06	0.09	7.1	9.3
Ok Om	Fish Flesh	55	0.01	0.02	0.007	0.01	0.01	0.02	0.16	0.23
OK OIII	Prawn Ab	58	0.04	0.05	0.003	0.01	0.02	0.03	6.6	8.5
Kuru	Fish Flesh	55	0.01	0.02	0.004	0.01	0.01	0.02	0.15	0.21
Ruiu	Prawn Ab	56	0.05	0.07	0.003	0.01	0.11	0.17	8.5	11
Upper River Ref	Fish Flesh	161	0.01	0.02	0.005	0.01	0.01	0.02	0.15	0.22
opper niver ner	Prawn Ab	175	0.05	0.06	0.003	0.01	0.06	0.11	7.1	9.8
Wankipe baseline	Fish Flesh	28	0.20	0.20	0.01	0.02	ND	ND	0.21	0.48
Trigger Value	Fish Flesh	-	-	0.20	-	0.02	-	0.02	-	0.48
Trigger Value	Prawn Ab	-	-	0.06	-	0.01	-	0.11	-	9.8

ND - Not Determined

Table 5-20 Summarised tissue metal data for upper river reference sites for previous 24 months (Hg - Zn), presenting median and 80%ile of data for each site (mg/kg wet wt.)

Site	Comple	n	Н	g	N	i	PI)	Se	•	Zr	1
Site	Sample	n	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile
Pori	Fish Flesh	51	0.07	0.09	0.01	0.01	0.01	0.01	0.26	0.34	5.2	6.1
FOII	Prawn Ab	61	0.01	0.01	0.01	0.01	0.01	0.01	0.27	0.3	13	15
Ok Om	Fish Flesh	55	0.05	0.07	0.01	0.01	0.01	0.01	0.23	0.28	5.0	6.8
OK OIII	Prawn Ab	58	0.01	0.01	0.01	0.02	0.01	0.01	0.43	0.51	14	15.6
Kuru	Fish Flesh	55	0.06	0.09	0.01	0.01	0.01	0.01	0.25	0.31	5.9	8.0
Kuru	Prawn Ab	56	0.01	0.01	0.01	0.02	0.01	0.01	0.36	0.41	14	16
Upper Diver Def	Fish Flesh	161	0.06	0.09	0.01	0.01	0.01	0.01	0.24	0.31	5.3	6.9
Upper River Ref	Prawn Ab	175	0.01	0.01	0.01	0.02	0.01	0.01	0.34	0.43	13	16
Wankipe baseline	Fish Flesh	28	0.07	0.08	0.10	0.10	0.7	0.17	0.20	0.20	8.9	10.4
USEPA (2014)	Fish Flesh	NA	NA	NA	NA	NA	NA	NA	2.26 (11	.3 dw)	NA	NA
Trigger Value	Fish Flesh	-	-	0.09	-	0.10	-	0.17	-	2.26	-	10.4
rngger value	Prawn Ab	-	-	0.01	-	0.02	-	0.01	-	0.43	-	16

NA - Not Applicable, dw - dry weight

Table 5-21 Summarised tissue metal data for lower river reference sites for previous 24 months (As - Cu), presenting median and 80%ile of data for each site (mg/kg wet wt.)

Site	Sample	_	A:	S	C	d	C	ŕ	C	u
Site	Sample	n	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile
Baia	Fish Flesh	1	0.01	0.01	0.003	0.003	0.01	0.01	0.09	0.09
Dala	Prawn Ab	54	0.06	0.1	0.01	0.01	0.04	0.06	6.6	11.4
Tomu	Fish Flesh	31	0.01	0.01	0.01	0.01	0.01	0.01	0.09	0.17
Tomu	Prawn Ab	44	0.06	0.1	0.01	0.01	0.03	0.05	9.7	11.4
Lower River Ref	Fish Flesh	32	0.01	0.01	0.008	0.01	0.01	0.01	0.09	0.17
Lower River Rei	Prawn Ab	98	0.06	0.01	0.01	0.01	0.04	0.06	8.8	11.6
Tiumsinawam baseline	Fish Flesh	19	0.04	0.07	0.003	0.003	0.02	0.03	0.13	0.17
Trigger Value	Fish Flesh	-	-	0.07	-	0.01	-	0.03	-	0.17
rrigger value	Prawn Ab	-	-	0.01	-	0.01	-	0.06	-	11.6

Table 5-22 Summarised tissue metal data for lower river reference sites for previous 24 months (Hg - Zn), presenting median and 80%ile of data for each site (mg/kg wet wt.)

Cito	Comple		H	g	N	i	Pb		Se)	Zr	1
Site	Sample	n	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile	Median	80%ile
Baia	Fish Flesh	1	0.01	0.01	0.01	0.01	0.01	0.01	0.16	0.16	3.5	3.5
Dala	Prawn Ab	54	0.01	0.01	0.01	0.02	0.01	0.01	0.25	0.28	13	14
Tomu	Fish Flesh	31	0.07	0.09	0.01	0.01	0.01	0.01	0.15	0.23	3.1	4.8
	Prawn Ab	44	0.01	0.01	0.01	0.01	0.01	0.01	0.27	0.33	14	16
Lower River Ref	Fish Flesh	32	0.07	0.09	0.01	0.01	0.01	0.01	0.16	0.22	3.2	4.8
Lower River Rei	Prawn Ab	98	0.01	0.01	0.01	0.01	0.01	0.01	0.26	0.31	13	16
Tiumsinawam baseline	Fish Flesh	19	0.06	0.12	0.026	0.03	0.076	0.17	0.13	0.17	3.33	4.6
USEPA (2014)	Fish Flesh	NA	NA	NA	NA	NA	NA	NA	2.26 (11	.3 dw)	NA	NA
Trigger Value	Fish Flesh	-	-	0.12	-	0.03	-	0.17	-	2.26	-	4.8
Trigger Value	Prawn Ab	-	-	0.01	-	0.01	-	0.01	-	0.31	-	16

NA - Not Applicable, dw - dry weight

An analysis of the trends of median values for metals in fish flesh and prawn abdomen between 2011 and 2015 are shown in Table 5-23 to Table 5-26 and shows that the concentrations of all metals in fish flesh and prawn abdomen in the upper and lower river reference sites have either decreased or did not change over that time period.

Table 5-23 Trends of metals in fish flesh for upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Fish flesh	Parameter	Spearman's	P-Value	Trend (2011 – 2015)				
Site	raiametei	rho	(P=0.05)	110114 (2011 2010)				
	As	-0.975	0.005	Decreased over time				
	Cd	-0.707	0.182	No change over time				
Upper Riv Ref	Cr	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time				
opport in the	Cu	-0.894	0.041	Decreased over time				
(Trend of Annual	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time				
Median)	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time				
iviculari)	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time				
	Se	-0.894	0.041	Decreased over time				
	Zn	-0.872	0.054	No change over time				

LOR - Limit of Reporting

Table 5-24 Trends of metals in prawn abdomen for upper river reference site 2011 - 2015 determined by Spearman Rank correlation against time

Prawn Abdomen	- Parameter	Spearman's rho	P-Value (P=0.05)	Trend (2011 – 2015)
Site				
	As	-0.289	0.638	No change over time
	Cd	-0.707	0.182	No change over time
Upper Riv Ref (Trend of Annual Median)	Cr	0.224	0.718	No change over time
	Cu	0.000	1.000	No change over time
	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	-0.600	0.285	No change over time
	Zn	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time

LOR - Limit of Reporting

Table 5-25 Trends of metals in fish flesh at lower river reference site 2011 - 2015 determined by Spearman Rank correlation against time

Fish flesh	Element	Spearman's rho	P-Value (P=0.05)	Trend (2011 – 2015)
Site				
	As	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Lower Riv Ref	Cd	-0.707	0.182	No change over time
	Cr	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cu	-0.718	0.172	No change over time
(Trend of Annual Median)	Hg	-0.264	0.668	No change over time
	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	-0.154	0.805	No change over time
	Zn	0.200	0.747	No change over time

LOR - Limit of Reporting

Table 5-26 Trends of metals in prawn abdomen at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Prawn Abdomen	Element	Spearman's rho	P-Value (P=0.05)	Trend (2011 – 2015)
Site				
Lower Riv Ref (Trend of Annual Median)	As	0.447	0.450	No change over time
	Cd	-0.707	0.182	No change over time
	Cr	0.671	0.215	No change over time
	Cu	0.400	0.505	No change over time
	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	-0.316	0.604	No change over time
	Zn	0.410	0.493	No change over time

LOR - Limit of Reporting

5.5.2 Lake Murray and ORWBs – Background Tissue Metal

A lack of community support for the monitoring program has prevented access to sites in Lake Murray for the purposes of fish and prawn sampling. Tissue metal risk assessment TVs for the Lake Murray and ORWBs therefore could not be developed due to a lack of tissue metal data from the North Lake Murray reference site locations within the past 24 months.

An analysis of the trends of median values for metals in fish flesh and prawn abdomen between 1999 and 2009 are shown in Table 5-27 and Table 5-28 and show that the concentration of copper and selenium in fish flesh and mercury and zinc in prawn abdomen increased over that time period, all other metals in fish flesh and prawn abdomen in the upper and lower river reference sites have either decreased or did not change over that time period.

Table 5-27 Trends of metals in fish flesh at Lake Murray and ORWB reference sites 1999 - 2009 determined by Spearman Rank correlation against time

Fish Flesh	Element	Spearman's rho	P-Value (P=0.05)	Trend (1999 – 2009)
Site				
LMY Ref Site (Maka) (Trend of Annual Median)	As	-0.286	0.322	No change over time
	Cd	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cr	-0.800	0.001	Decreased over time
	Cu	0.553	0.040	Increased over time
	Hg	0.254	0.382	No change over time
	Ni	0.034	0.907	No change over time
	Pb	ND	ND	No change over time
	Se	0.771	0.010	Increased over time
	Zn	0.094	0.750	No change over time

LOR - Limit of Reporting

Table 5-28 Trends of metals in fish liver at Lake Murray and ORWB reference sites 1997 - 2009 determined by Spearman Rank correlation against time

Fish Liver	Element	Spearman's rho	P-Value (P=0.05)	Trend (1999 – 2009)
Site				
LMY Ref Site (Maka) (Trend of Annual Median)	As	-0.670	0.012	Decreased over time
	Cd	0.426	0.146	No change over time
	Cr	-0.761	0.003	Decreased over time
	Cu	0.259	0.393	No change over time
	Hg	0.711	0.006	Increased over time
	Ni	0.222	0.466	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	0.303	0.314	No change over time
	Zn	0.648	0.017	Increased over time

LOR - Limit of Reporting

5.6 Background Aquatic Biology and Impact Assessment Criteria

5.6.1 Fish and Prawns

Throughout the development of the revised AER methodology for the 2013 AER, it became apparent that the dataset for biological indicators was not capable of supporting the development of impact assessment criteria in accordance with the method being applied to water, sediment and tissue metals data. The following issues have contributed to this situation:

- Inconsistent sampling methodology has been applied between sampling events and between sites over the history of the program making it difficult to compare data spatially and temporally. The assumption that equal sampling effort was being applied within and between sites could not be substantiated. Therefore the results could not continue to be assessed accurately on a catch per unit of effort bases.
- Some of the sampling methods have resulted in fatality of animals which may have been adversely affecting remaining population sizes.
- Low numbers of the target species exist at both the reference and test sites, particularly within the upper catchment. The ineffectiveness of the sampling methods, combined with the small spatial scale of sampling relative to the low density/high dispersion of the target animals results in a highly variable data set that is dominated by low or zero value results, which in turn reduces the statistical power of the data set and ultimately limits the ability of the monitoring program to statistically detect change within the ecosystem.

Application of the proposed methodology to these data would result in very low or zero values for impact criteria TVs at reference sites, which are not an appropriate benchmark for comparison with test site data as it does not provide a basis upon which to assess change at the test site.

To address this issue, Porgera began a revision of the biological monitoring program in 2014. The process included a review of current fish and prawn sampling methods with a view to achieving better standardisation between sampling events and between sites. At the time of writing the department was in the process of finalizing updated standard operating procedures for sampling, data management and reporting. It is expected to take two to three years of sampling to determine whether the revised methods for assessing fish and prawn communities has been effective in improving the dataset for fish and prawn biology.

The 2015 data were added to the historical record which includes baseline data. The data were then grouped by combining the results from all sampling methods and all indicator sub-species of fish and prawns throughout the historical data set to establish an annual median with which an historical trend could be established.

It should be noted that the grouping process is by no means ideal and carries over a high level of inherent uncertainty to the results. Therefore where possible, the presence or absence of potential impact is inferred, rather than the preferred and more robust, statistically-based conclusion of the presence or absence of actual impact.

The results presented in this section provide an indication of the trend of the biological indicators at the reference sites, which then act as a basis for inferring whether potential impact is occurring at test sites in Section 8.1.

5.6.1.1 Upper and Lower River

Trends for biological indicators of impact for the upper and lower river reference sites are presented in Table 5-29 to Table 5-32. The results show that fish richness decreased over time at the lower river reference sites, all other indicators have not changed over the time period.

Table 5-29 Trends for fish at upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Indicator	Spearman's rho	P-Value	Trend (2011 – 2015)
Fish Abundance	0.300	0.624	No change over time
Fish Richness	0.577	0.308	No change over time
Fish Biomass	0.100	0.624	No change over time
Fish Condition	0.300	0.624	No change over time

Table 5-30 Trends for prawns at upper river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Indicator	Spearman's rho	P-Value	Trend (2011 – 2015)
Prawn Abundance	0.700	0.188	No change over time
Prawn Richness	*	*	No change over time
Prawn Biomass	0.400	0.505	No change over time
Prawn Condition	0.900	0.037	No change over time

^{*} Indicates all values within the data set are equal, therefore cannot support the Spearman Rank test but does indicate no significant change over time.

Table 5-31 Trends for fish at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Indicator	Spearman's rho	P-Value	Trend (2011 – 2015)
Fish Abundance	0.667	0.219	No change over time
Fish Richness	-0.894	0.041	Decreased over time
Fish Biomass	0.300	0.624	No change over time
Fish Condition	0.700	0.188	No change over time

Table 5-32 Trends for prawns at lower river reference sites 2011 - 2015 determined by Spearman Rank correlation against time

Indicator	Spearman's rho	P-Value	Trend (2011 – 2015)
Prawn Abundance	-0.400	0.505	No change over time
Prawn Richness	*	*	No change over time
Prawn Biomass	-0.400	0.505	No change over time
Prawn Condition	-0.400	0.505	No change over time

^{*} Indicates all values within the data set are equal, therefore cannot support the Spearman Rank test but does indicate no significant change over time.

5.6.1.2 Lake Murray

Biological performance assessment criteria for Lake Murray are presented in Table 5-33.

The results show no change in any of the indicators over time. Monitoring has not been conducted within Lake Murray since 2009 due to a lack of community support for the monitoring program.

Table 5-33 Trends for fish at Lake Murray reference site 1993 - 2009 determined by Spearman Rank correlation against time

Indicator	Spearman's rho	P-Value	Trends (1993 – 2009)
Fish Abundance	-0.164	0.558	No change over time
Fish Richness	0.087	0.759	No change over time
Fish Biomass	0.111	0.694	No change over time
Fish Condition	-0.446	0.095	No change over time

5.6.2 Macroinvertebrates

In 2014, PJV engaged Wetland Research and Management (WRM) to undertake a scoping study to investigate whether monitoring benthic macroinvertebrate populations within the receiving environment upstream of SG3 could provide a robust basis for impact assessment. Macroinvertebrates (i.e. fauna visible to the eye and retained by a 250 µm aperture mesh) typically constitute the largest and most conspicuous component of aquatic invertebrate fauna in both lentic (still) and lotic (flowing) waters. Macroinvertebrates are used as a key indicator group for bioassessment of the health of Australia's streams and rivers under the National River Health Program (NRHP) (Schofield and Davies 1996), and have inherent value for biological monitoring of water quality (ANZECC/ARMCANZ 2000) (WRM 2015). Macroinvertebrates are more easily sampled, function at a lower spatial scale than prawns and fish, are less mobile, likely more sensitive to changes in water quality, and would not be so susceptible to the challenges that are faced by fish and prawn sampling (WRM 2015).

The initial sampling program for the study was carried out in August and September 2014, the program was repeated in August 2015. The results showed that there are rich macroinvertebrate fauna populations within the local and receiving waterways making them suitable as the basis of a sensitive ecological health monitoring program. However, given that the sampling has been conducted over only two years, the data are temporally limited and it is recommended that at least three years of data from reference sites are required to characterise temporal variability, confirm consistency in responses observed, and form an adequate baseline for developing robust SSTVs (WRM 2015). The program will be repeated in 2016 to complete the three year requirement.

6 COMPLIANCE

This Section provides a summary of the operation's compliance with environmental legal requirements. Table 6-1 is a summary of compliance with the operation's environmental permit conditions and Table 6-2 is a summary of water quality results at the SG3 compliance point and other monitoring stations between the discharge point and SG3. It should be noted that SG3 is the only mandatory compliance point and the results from other monitoring stations within the mixing zone are reported for information purposes only.

Table 6-1 Compliance Summary 2015

Permit	% Compliance	Comments
Waste Discharge Permit	97%	Averaged 97% compliance throughout 2015.
WD – L3 (121)		Non-compliance related to short duration exceedance of TSS concentrations in discharge from 3 of the 5 sewage treatment plants. Note that 100% compliance was achieved throughout November and December.
Water Extraction Permit WE – L3 (91)	100%	Compliant with all eight (8) conditions.
TOTAL	98%	Target is 100% compliance.

Table 6-2 Median water quality at Upper River Test Sites against SG3 permit criteria 2015 ($\mu g/L$ except where shown)

Site	n	pH^	Ag-D	As-D	Cd-D	Cr-D	Cu-D	Ni-D	Pb-D	Zn-D		
SG1	6	7.4	0.05	1.5	1.4	0.14	1.8	3.5	0.18	31		
SG2	14	7.5	0.05	1.3	0.22	0.14	1.6	1.5	0.10	7.7		
Wasiba	15	7.4	0.05	1.8	0.15	0.20	1.6	1.1	0.10	5.4		
Wankipe	15	7.5	0.05	1.7	0.13	0.20	1.4	0.98	0.10	5.0		
SG3	192	7.6	0.05	1.7	0.07	0.17	1.6	0.67	0.10	4.3		
SG3 Perm	it Criteria	6 - 9	4.0	50	1.0	10	10	50	3.0	50		
Co	Compliant											
No	Non-Compliant											

D - Dissolved fraction, ^ standard pH units

Note: There is no permit criterion for mercury (Hg)

7 RISK ASSESSMENT

7.1 Hydrology and Environmental Flows

7.1.1 Waile Creek

Figure 7-1 shows a flow duration curve for Waile Creek Dam in 2015, generated from dam water level measurements and used for estimation of spillway flows to the creek downstream of the extraction point. Overflow was relatively constant for the reporting period but occasional higher peak flows occurred. The frequency and duration of zero-flow periods are important in terms of environmental flows, although environmental flow is maintained downstream of the dam wall when the dam is not overflowing due to leakage from the dam. During 2015, there were 27 occurrences where the dam did not overflow (of one or more days) with the longest period being 12 days.

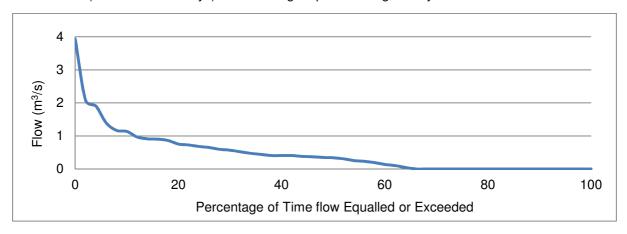


Figure 7-1 Daily flow duration curve (estimated) for Waile Creek Dam overtopping

7.1.2 Kogai Creek

Figure 7-2 shows daily flow duration curves for Kogai Creek upstream (Kogai at SAG Mill) and downstream of the Mill extraction point (Kogai Culvert). Water is extracted at a constant daily rate and the graph shows that water extraction resulted in minimal change to the flow duration curve downstream. Approximately 500 m downstream of the extraction point, and 50m upstream of Kogai Culvert, Kulapi Creek joins with Kogai Creek. The water extraction results in a reduction of the Kogai flow but did not result in any zero flow events within Kogai Creek.

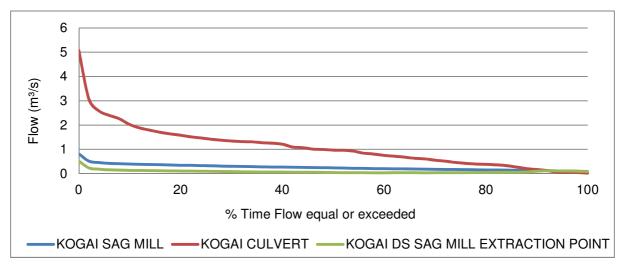


Figure 7-2 Daily flow duration curves for Kogai Creek

7.2 Sediment Transport and Fate of Sediment

Sediments contained in the tailings discharge as well as those exported from the toe of the erodible dumps are transported downstream by the river flow. Erodible waste rock is deposited at the head of the Anawe and Anjolek erodible waste rock dumps and is gradually eroded into the river system. Tailings are discharged at the head of the Anawe erodible dump, and it is estimated that approx 5% of the tailings is retained along the Anawe erodible dump.

Estimating the volumes of sediment that actually reaches the river system each year, and the relative contributions of natural sediment, waste rock and tailings are made using: the measured volumes of waste deposited to the erodible dumps; the volume and density of tailings discharge; the change in volume of the erodible dumps from year to year using survey data; the TSS of water from non-mine related catchments downstream of the mine, and river flow rates. This calculation is applied at SG3 as a much higher sampling intensity is performed at this location for compliance purposes which therefore provides a much larger TSS data set which can be combined with a continuous stream flow record. Only single monthly TSS samples are taken at the other river monitoring stations, meaning that suspended sediment load estimates at these locations are not as reliable as at SG3.

It should be noted that the river stage at the time of sampling has a significant effect on the TSS concentration, with higher TSS generally measured during high flows although the relationship between TSS and flow is complex and varies with distance downstream because mine inputs are relatively constant while natural inputs are more variable. Sampling at SG3 is carried out over 4 successive days each month so the conditions at the time of sampling may not be representative of flows during the whole of the month. Despite this limitation, the data are considered to provide a reasonable estimate of monthly suspended sediment loads for SG3.

Monthly mean TSS concentrations at SG3 in 2015 are shown in Figure 7-3, 2015 monthly TSS loads are shown in Figure 7-4 and historical annual TSS loads are shown in Figure 7-5.

The annual suspended sediment load at SG3 is estimated from the TSS and flow records using a statistical analysis to correct the results for discrepancies arising from irregularly sampled record and continuous record of flow. The statistical analysis is contained in a computer program called *Gumleaf* (Generator for Uncertainty Measures and Load Estimates using Alternative Formulae). The program computes sediment load using 22 different formulae. The program authors are Dr. K. Tan, Professor David Fox (Environmetrics Australia P/L) and Dr. Teri Etchells. Permission for use of Gumleaf was kindly provided by Professor Fox.

The median annual suspended sediment load at SG3 for 2015 was estimated by *Gumleaf* to be 20 Mt, this compares to the long term median since 1990 of approximately 43 Mt/a, and an annual load in 2014 of 31 Mt.

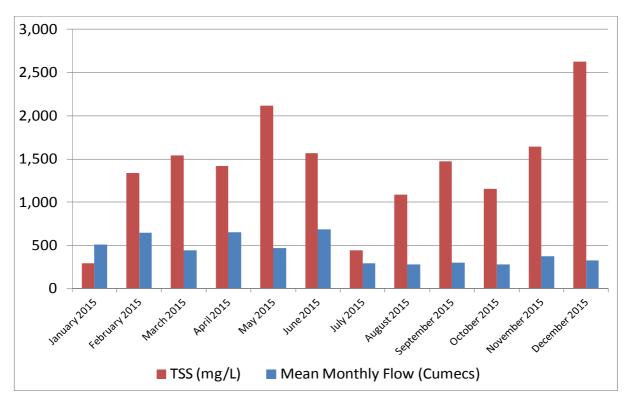


Figure 7-3 Mean monthly TSS and flow at SG3 for 2015

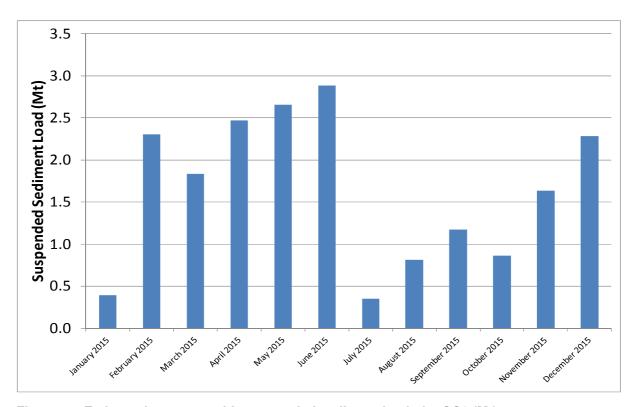


Figure 7-4 Estimated mean monthly suspended sediment loads for SG3 (Mt)

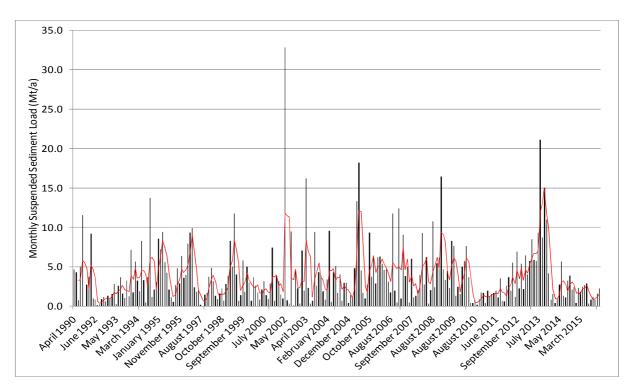
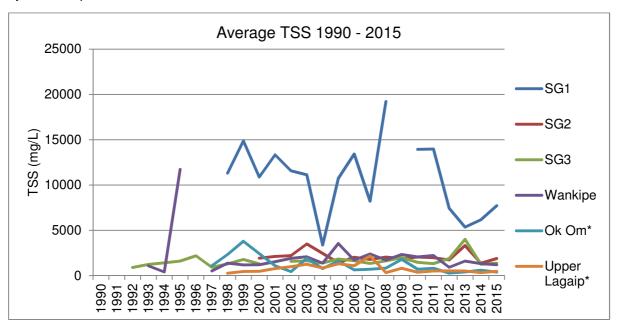



Figure 7-5 Estimated monthly suspended sediment load (black bars) with 3-month moving average at SG3 for full record (red solid line)

To determine the relative contributions of mine-derived and natural sediment to the total sediment load at SG3, the results of the *Gumleaf* analysis were compared with estimates of mine-derived inputs based on the survey analysis and tailings data.

Figure 7-6 shows historical average TSS values at river monitoring stations upstream of SG3. All sites, reference and test, showed a reduction in TSS values compared with 2014 values, with a minor increase in TSS values for SG1 being the exception, however this is not considered significant in the context of historical variability, meaning that there was a lower contribution of natural TSS to the system compared to 2014.

^{*} Reference site

Figure 7-6 Historical average TSS 1990 - 2015

Figure 7-7 shows the estimated relative contribution of tailings, waste rock and natural suspended sediment to the total suspended sediment load at SG3 since 1991. Figure 7-8 shows the same dataset presented in terms of the percentage contribution of tailings, waste rock and natural suspended sediment to the overall suspended sediment load.

The analysis shows that the estimated loads contributed by tailings and waste rock in 2015 were consistent with historical volumes, and also that the natural sediment load was significantly less than 2014 and historical volumes.

As a result of consistent mine-derived load and a reduction in natural load, the proportion of total suspended sediment load that was mine-derived during 2015 at SG3 was estimated to be approximately 49% which compares to 34% in 2014 and the long term median value of approximately 23%. By way of comparison, geochemical analyses on sediments conducted as part of the NSF (US National Science Foundation) sponsored Margins Source to Sink Research Program found that, by using silver and lead as tracers, the proportion of mine-derived sediment was 29% for SG3 and 12-13% for SG4 (Swanson *et al.* 2008).

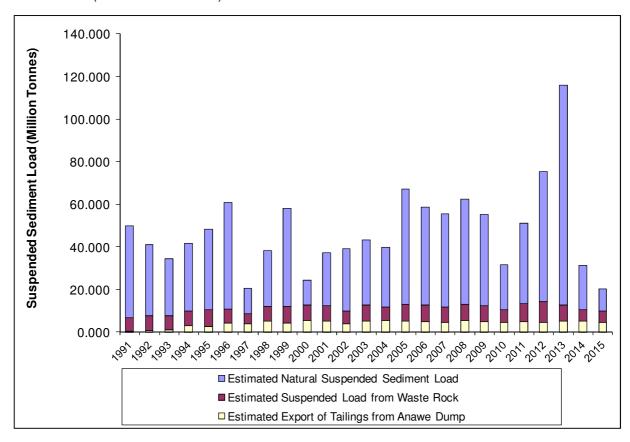


Figure 7-7 Suspended sediment budget at SG3 since 1991

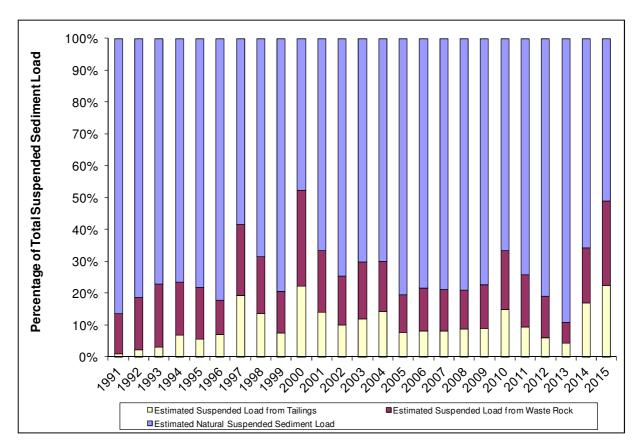


Figure 7-8 Relative contribution of natural and mine-derived suspended sediment at SG3 (%)

7.2.1 Sediment Aggradation and Erosion

Surveying of river profiles (river-bed cross sections) is performed downstream of the mine at designated locations to evaluate changes in bed levels (aggradation or degradation). Unfortunately over the last few years, it has not been possible to undertake surveys at historical sites along the Porgera River at SG1 (8km downstream of the mine) due to a lack of community support for the monitoring program. Profiling sites are listed in Table 7-1.

Table 7-1 River profiling sites

Region	Site Name	Duration of monitoring
	Kaiya River downstream Kogai Creek Confluence	2009 – 2015
Porgera Valley	Kaiya River upstream Yuyan Bridge	2009 – 2015
	Kaiya River downstream of Yuyan Bridge	2009 – 2015
Upper Rivers	Lagaip River at SG2	1990 – 2015
Lower Rivers	Strickland River at PF10	2000 – 2015

Observations from previous years indicate sediment moves along the Kaiya River downstream of the Anjolek erodible dump in an episodic fashion (pulses) showing alternate phases of degradation and aggradation (cut-and-fill) of around 0.5m to 2m. These phases of cut-and-fill are caused by the interplay of a number of factors including sediment supply from the dump and river flow rates, which are driven by rainfall patterns. Figure 7-9, Figure 7-10 and Figure 7-11 illustrate the current situation within the Kaiya Valley, compared with past surveys. The profiles show that the 2015 bed levels are relatively low compared to levels recorded since 2010.

Figure 7-12 presents a time series of the minimum surveyed point at each cross section within the Kaiya River and is a useful metric of aggradation or degradation trends. Data for 2015 suggest that the Kaiya River between toe of the Anjolek erodible dump and the Porgera River is steady or generally in a phase of erosion, with bed levels trending slightly downwards. This is consistent with the interpretation of observations of behaviour of the Anjolek erodible dump which indicates that the landform is eroding and therefore that the river's sediment carrying capacity is not being exceeded.

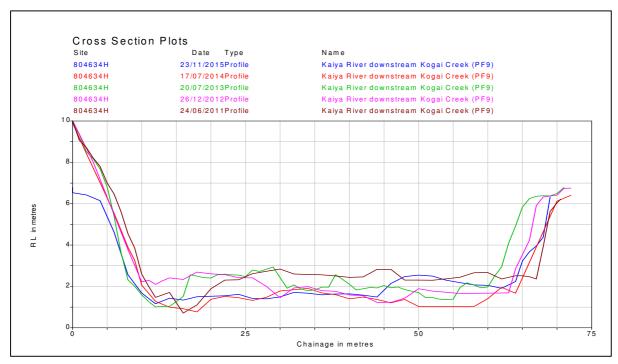


Figure 7-9 Profile comparison (2011 - 2015) at Kaiya River downstream of Kogai Creek Confluence

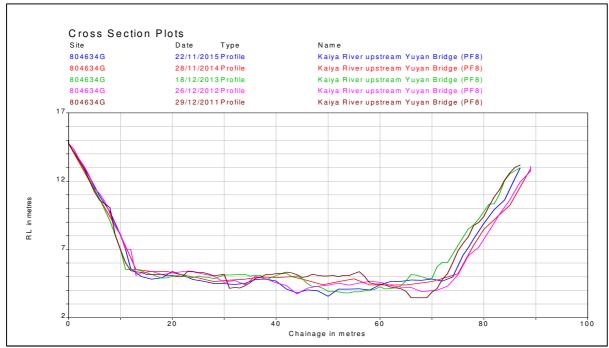


Figure 7-10 Profile comparison (2011 - 2015) for Kaiya River upstream of Yuyan Bridge

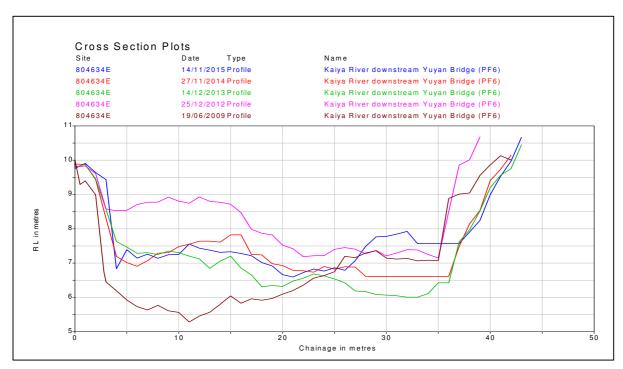


Figure 7-11 Profile comparison (2009 - 2015) for Kaiya River downstream of Yuyan Bridge

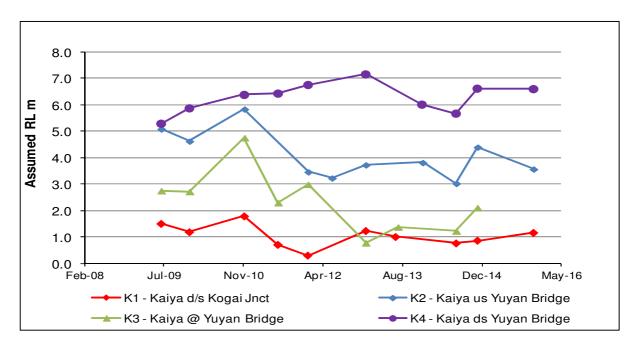


Figure 7-12 Time series of minimum bed elevations along the Kaiya River

As discussed in previous Annual Reports, the bed of the Porgera River at SG1 aggraded during mine construction due to initial disposal of erodible waste rock at Anawe erodible dump between about 1988 and 1991, see Figure 4-12. Since the initial aggradation, the bed elevation has remained more or less consistent with only minor variation. Although there have been no flow measurements or cross-section surveys along the Porgera River for some time, due to law and order issues preventing access, there is no evidence from qualitative observations alone that significant aggradation or erosion of valley walls is occurring along the Porgera River.

River profiles at SG2, 42 km downstream of the mine, are shown Figure 7-13 and indicate alternate periods of sediment aggradation and degradation over the years. Although aggradation appears to

have occurred in 2015, however, in the longer term there appears to be no long term aggradation or degradation.

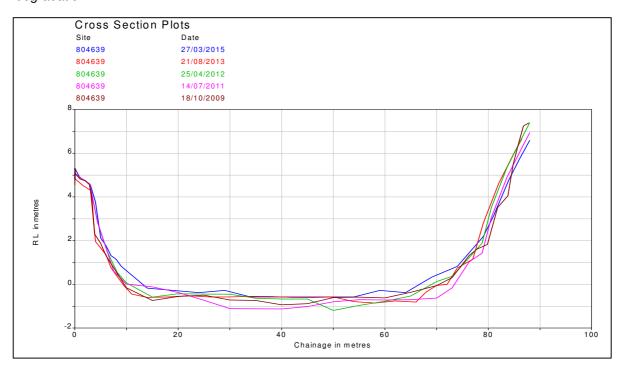


Figure 7-13 Profile comparison (2001 - 2015) at Lagaip River at SG2

As the river descends to the lowlands (the Fly Platform) from the upland areas, the velocity slows and temporary sediment deposition starts to occur in the form of transient gravel and sand bars. Further downstream, floodplain connections become better established and the bed material becomes predominantly sands and silts.

Figure 7-14 illustrates changes at Profile 10, 400km downstream from the mine. There is no discernible change or evidence of sediment aggradation at PF10 aside from the isolated spatial redistribution throughout the cross section which is indicative of natural behaviour in a meandering lowland river. The right bank of the channel has been eroded progressively over the 15 years, resulting in widening of the channel by approximately 30 m, which is attributed to natural meandering processes. The 2015 survey shows that some degradation has occurred since the last survey.

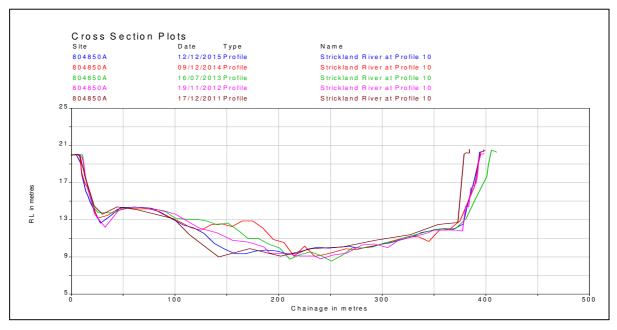


Figure 7-14 Profile comparison (2000 - 2015) at Profile 10

7.3 Water Quality, Sediment Quality and Tissue Metals Risk Assessment

This section assesses the risks posed to aquatic ecosystems by physical and chemical stressors and toxicants in water, sediment and tissue metals in accordance with the methodology outlined in Section 2.1. Each matrix is first presented separately for each section of the river system, however given that a complex relationship exists between physical and chemical toxicants, matrices and other environmental factors such as natural inputs, hydrology and topography, it is also necessary to investigate the potential risks posed by the behavior of each physical and chemical toxicant throughout the receiving environment. This summary of risks is provided in Section 7.3.4.

7.3.1 Water Quality

7.3.1.1 Upper and Lower River

The risk assessment for water quality at the upper river test sites involves comparing the 2015 median value at each test site (i.e. the test site median (TSM)), against the relevant TV in accordance with the risk assessment procedure described in Section 2. The test site median is derived either from the most recent 12-month data set or 24-month data set, depending on the number of samples collected during the time period, in order to provide the appropriate level of statistical power.

The comparison of the TSM against the TV is supported by a statistical analysis using Wilcoxon's Rank Test to ensure any conclusions are based on sound statistics and are not an artefact of the data set.

The results of the risk assessment for the upper and lower river are summarised in Table 7-2 and Table 7-3 respectively. Detailed results of the statistical analysis are shown in Appendix D, Table D-3 to Table D-10 and figures showing comparisons of the historical data against the TVs are shown in Appendix D, Figure D-1 to Figure D-28.

Highland and lowland river systems within PNG typically exhibit a naturally high sediment load and are exposed to episodic variations in TSS concentrations. Periods of high TSS reflect periods of high rainfall with a prevalence of large scale erosion and landslides, and periods of low TSS reflect periods of low rainfall with reduced erosion and sediment transport.

In addition to receiving fluctuating loads of natural sediment, rivers downstream of the mine also receive a constant input of sediment from the mine, predominantly from the tailings discharge and to a lesser extent from the erodible waste rock dumps. Therefore, it is possible that the potential risk to rivers downstream of the mine is caused through both significant increases in maximum TSS concentrations compared to reference conditions and also that the constant nature of the mine contribution causes average TSS concentrations to be elevated when compared to reference conditions, which prevents or reduces episodes of low TSS from occurring as they would in a natural system.

The assessment shows that TSS concentrations at SG1 in the upper river pose a risk to aquatic ecosystem health. SG1 is located 8 km downstream from the mine, elevated TSS at this location is due to the mine inputs of tailings and sediment from the erodible dumps and contact runoff. TSS concentrations at all other upper river and lower river test sites are significantly less than the respective TSS TVs and therefore do not pose a risk to aquatic ecosystem health.

Elevated concentrations of dissolved metals in water have the potential to cause chronic and/or acute toxic effects to organisms within the receiving environment, including humans, and as a result can potentially affect ecosystem health and biodiversity. The risk assessment results show that in the upper river risk to aquatic ecosystems is posed by concentrations of dissolved cadmium and dissolved zinc at SG1. In the lower river, risk to aquatic ecosystems is posed by dissolved copper at Bebelubi

and Tiumsinawam. All other parameters at all other sites within the upper and lower rivers pose a low risk to aquatic ecosystems.

Table 7-2 Risk assessment – median water quality results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk ($\mu g/L$ except where shown)

Site	n	pH^	TSS*	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
SG1	6	7.4	6,498	0.05	1.5	1.4	0.10	1.8	14	0.05	3.5	0.18	0.25	31
SG2	14	7.5	1,831	0.05	1.3	0.22	0.14	1.6	6.3	0.05	1.5	0.10	0.20	7.7
Wasiba	16	7.4	1,413	0.05	1.8	0.15	0.20	1.6	3.3	0.05	1.1	0.10	0.20	5.4
Wankipe	16	7.5	820	0.05	1.7	0.13	0.20	1.4	3.3	0.05	0.98	0.10	0.20	5.0
SG3	193	7.6	1,133	0.05	1.7	0.07	0.17	1.6	4.8	0.05	0.67	0.10	0.20	4.3
UpRiv \	VQ TV	6.0- 8.1	2837	0.20	24	0.40	1.0	4.1	75	0.60	21	8.3	11	20
	Low risk = significantly < TV													
	Potential risk = not significantly different from TV OR significantly > TV													

D - Dissolved fraction, ^ std units, * mg/L

Note – TSM derived from 12 months data throughout 2015

Table 7-3 Risk assessment – Median water quality results at lower river test sites in 2015 compared against LwRiv TVs showing which indicators pose low and potential risk ($\mu g/L$ except where shown)

Site	n	pH^	TSS*	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
Bebelubi	8	7.3	353	0.05	1.6	0.08	0.20	1.5	5.6	0.05	0.51	0.10	0.20	5.6
Tiumsina wam	8	7.4	516	0.05	1.3	0.07	0.17	1.4	13.5	0.05	0.50	0.11	0.20	4.9
SG5	9	7.3	336	0.05	1.0	0.05	0.13	1.1	10	0.05	0.50	0.10	0.20	1.5
LwRiv W	Q TV	6.0- 8.2	983	0.20	24	0.20	1.0	1.4	75	0.6	15	2.8	11	7.0
L	Low risk = significantly < TV													
F	Potential risk = significantly > TV OR not significantly different from TV													

D - Dissolved fraction, ^ std units, * mg/L

Trends of water quality in the upper river and the lower river test sites are summarised in Table 7-4 and Table 7-5 respectively. Detailed results are shown in Appendix D, Tables D-11 and D-12 respectively. The results show that concentrations of TSS at Wankipe, dissolved silver at Bebelubi and TSS at SG5 have increased between 2011 and 2015, all other parameters have either remained unchanged or have reduced.

Table 7-4 Comparison of trends of water quality at the upper river reference and test sites 2011 - 2015

Site	рН	TSS	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
UpRiv Ref													
SG1													
SG2													
Wasiba													
Wankipe													
SG3													
Reduc	ed or no d	ed or no change over time											
Increa	creased over time												

D - Dissolved fraction

Table 7-5 Comparison of trends of water quality at the lower river reference and test sites 2011 - 2015

Site		рН	TSS	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
LwRiv F	Ref													
Bebeluk	Bebelubi Bebelubi													
Tiumsin	nawam													
SG5														
	Reduce	d or no change over time												
	Increas	ased over time												

D - Dissolved fraction

7.3.1.2 Lake Murray and ORWBs

The water quality risk assessment results for Lake Murray and the ORWBs are shown in Table 7-6. Detailed results of the statistical analysis are shown in Appendix D, Table D-13 to Table D-18 and figures showing comparisons of the historical data against the TVs are shown in Appendix D, Figure D-29 to Figure D-43.

The results indicate that a risk to aquatic ecosystems is posed by TSS at Avu.

Table 7-6 Risk Assessment – Median water quality results at Lake Murray & ORWB test sites in 2015 compared against LMY and ORWB TVs showing which indicators pose low and potential risk (μ g/L except where shown)

Site	n	pH^	TSS*	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D	
Central Lake	11	6.6	9.0	0.05	0.31	0.05	0.10	0.60	33	0.05	0.50	0.10	0.20	2.5	
Southern Lake	10	7.0	11	0.05	0.91	0.05	0.10	0.90	5.5	0.05	0.50	0.10	0.20	2.2	
SG6	4	6.6												2.9	
Kuku- fionga	0		No data collected in 2015												
Zonga- mange	0					No	data c	ollected	l in 201	5					
Avu	2	6.9	62	0.05	3.4	0.05	0.16	1.1	103	0.06	0.88	0.38	0.20	2.4	
LMY a		5.3- 8.0	- 23 1105 24 1172 10 14 340 1116 11 34 11 80												
L	ow risk	risk = significantly < TV													
P	otential	risk = s	ignifican	tly > TV	OR no	t signifi	icantly (differen	t from ⁻	ΓV					

D - Dissolved fraction, ^ std units, * mg/L

The long-term trends presented in Appendix D, Table D-19 show that the concentrations of TSS at Central Lake, Southern Lake and Avu increased between 2011 and 2015, all other parameters either remained unchanged or reduced.

Table 7-7 Comparison of trends of water quality at Lake Murray and ORWB reference and test sites 2011 - 2015

Site	рН	TSS	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
LwRiv Ref													
Central Lake													
Southern Lake													
SG6													
Avu													
Reduce	ced or no change over time												
Increas	creased over time												

D - Dissolved fraction

7.3.2 Sediment Quality

7.3.2.1 Upper and Lower River

The sediment quality risk assessment results for the upper and lower rivers are presented in Table 7-8 and Table 7-9 respectively. Detailed results of the statistical analysis are shown Appendix E, Table E-2 to Table E-9 and figures showing comparisons of the historical data against the TVs are shown Appendix E, Figure E-1 to Figure E-22.

Similar to water quality, elevated concentrations of WAE metals in sediment have the potential to cause chronic and/or acute toxic effects to organisms within the receiving environment, including humans, and as a result can potentially affect aquatic ecosystem health and biodiversity.

In the upper river, risk to aquatic ecosystems is posed by WAE lead at SG1, SG2, Wasiba and Wankipe. In the lower river risk is posed by WAE nickel at SG5. All other metals in sediments at all other upper and lower river sites were significantly less than the TV and therefore pose a low risk to aquatic ecosystems.

Table 7-8 Risk Assessment – Median sediment quality results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk (mg/kg whole sediment)

Site	n	Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE			
SG1	6	0.50	5.5	0.82	3.8	6.3	0.01	5.1	125	0.50	114			
SG2	12	0.50	6.9	0.90	5.9	14	0.02	6.7	71	0.50	130			
Wasiba	15	0.50	6.3	0.71	4.0	10	0.01	12	54	0.50	81			
Wankipe	15	0.50	6.0	0.59	3.8	10	0.01	8.4	44	0.50	78			
SG3			3.4	0.50	6.2	6.5	0.01	18	13	0.50	44			
UpRiv Sec	TV	1.0	20	1.5	80	65	0.15	27	50	0.50	200			
Low r	Low risk = significantly < TV													
Poten	tial risk =	Potential risk = significantly > TV OR not significantly different from TV												

WAE - Weak acid extractable

Table 7-9 Risk Assessment – Median sediment quality results at lower river test sites in 2015 compared against LwRiv TVs showing which indicators pose low and potential risk (mg/kg whole sediment)

Site	n		Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE	
Bebelubi	6		0.50	3.4	0.50	6.2	6.5	0.01	18	13	0.50	44	
Tiumsinawa	m 8		0.50	2.3	0.50	3.8	6.4	0.01	9.0	9.4	0.50	34	
SG5	8		0.50	4.2	0.50	21	13	0.01	38	19	0.50	120	
LwRiv S	LwRiv Sed TV 1.0 20 1.5 80 65 0.20 21 50 0.50 2									200			
Lov	Low risk = significantly < TV												
Po	tential ris	k =	significa	ntly > TV	OR not	significan	tly differe	ent from	ΓV				

WAE - Weak acid extractable

The trends of metals in benthic sediments have been assessed between 2011 and 2015, and the results for WAE metals in whole sediment are summarised in Table 7-10 and Table 7-11 respectively, and detailed results are presented in Appendix E Table E-10 for the upper and Table E-11 for lower river test sites.

In the upper river, increased concentrations were observed at the following locations: at SG1 WAE chromium and WAE nickel; at SG2 WAE arsenic, WAE chromium and WAE nickel; at Wasiba WAE cadmium; at Wankipe WAE arsenic, WAE cadmium, WAE chromium, WAE copper and WAE zinc, and at SG3 WAE arsenic, WAE cadmium, WAE chromium, WAE copper, WAE lead and WAE zinc. The concentration of all other WAE metals at all other sites have either reduced or remained unchanged between 2011 and 2015.

In the lower river, increased concentrations were observed at the following locations: at Bebelubi WAE chromium; at SG4/Tiumsinawam WAE chromium, and at SG5 WAE copper and WAE lead. The concentration of all other WAE metals in benthic have either reduced or remained unchanged between 2011 and 2015.

Table 7-10 Comparison of trends of sediment quality at upper river reference and test sites 2011 - 2015 (whole sediment)

Site		Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE	
UpRiv Re	ef											
SG1												
SG2												
Wasiba												
Wankipe)											
SG3												
	No change or r	or reduced over time										
	Increased over time											

WAE - Weak acid extractable

Table 7-11 Comparison of trends of sediment quality at lower river reference and test sites 2011 - 2015 (whole sediment)

Site		Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE
LwRiv F	Ref										
Bebelul	oi										
SG4/Tit	umsinawam										
SG5											
	No change or i	change or reduced over time									
	Increased over time										

WAE - Weak acid extractable

7.3.2.2 Lake Murray and ORWBs

The results of the risk assessment for metals in sediment sampled at Lake Murray and the ORWB test sites are presented in Table 7-12Table 7-12. Detailed results of the statistical analysis are shown Appendix E, Table E-12 to Table E-17 and figures showing comparisons of the historical data against the TVs are shown in Appendix E, Figure E-23 to Figure E-32.

The risk assessment shows that risk to aquatic ecosystems is posed by WAE nickel in benthic sediment at Central Lake, Southern Lake, SG6 and Avu, and by WAE lead at Avu. The occurrence of elevated WAE nickel at these locations appears unrelated to the mine operation because the concentrations are significantly higher than the mine discharge.

Table 7-12 Risk assessment – median sediment quality results at Lake Murray and ORWB test sites in 2015 compared against LMY and ORWB TVs showing which indicators pose low and potential risk (mg/kg WAE whole sediment)

Site	n	Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE		
Central Lake	11	0.50	1.6	0.50	20	17	0.08	24	15	0.50	86		
Southern Lake	10	0.50	4.7	0.50	22	22	0.06	30	30	0.50	110		
SG6	4	0.5 8.8 0.50 21 22 0.02 32 33 0.50								0.50	120		
Kukufionga	0		No data collected in 2015										
Zongamange	0				No	data colle	ected in 2	015					
Avu	2	0.50	9.7	0.62	21	24	0.02	34	62	0.5	170		
Lake Murray ORWBs Sed													
Low ris	_ow risk = significantly < TV												
Potentia	Potential risk = significantly > TV OR not significantly different from TV												

WAE - Weak acid extractable

A summary of analysis of trends of WAE metals in benthic sediment between 2013 and 2014/2015 is shown in Table 7-13. Detailed results of the statistical analysis are provided in Appendix E, Table E-18.

The assessment shows increased concentrations at the following locations: at the Central Lake WAE arsenic, WAE chromium, WAE copper, WAE nickel, WAE lead and WAE zinc; at the Southern Lake WAE arsenic, WAE chromium, WAE copper, WAE nickel and WAE zinc; at SG6 WAE chromium and WAE nickel, and at Avu WAE arsenic, WAE cadmium, WAE chromium, WAE nickel and WAE zinc. The concentration of all other WAE metals in benthic sediment have either reduced or remained unchanged between 2011 and 2015.

Table 7-13 Comparison of trends of sediment quality at Lake Murray and ORWB reference and test sites 2011 - 2015 (whole sediment)

Site	Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE	
L Murray/ORWBs Re											
Central Lake											
Southern Lake											
SG6											
Kukufionga *											
Zongamange*											
Avu											
No change o	No change or reduced over time										
Increased ov	Increased over time										

WAE - Weak acid extractable, * trend between 2013-2014

7.3.3 Tissue Metals

7.3.3.1 Upper and Lower River

The results of the risk assessment for concentrations of metals in tissue from prawn and fish samples collected in 2015 from riverine test sites are shown in Table 7-14 and Table 7-15 respectively. Detailed results of the statistical analysis are shown Appendix F, Table F-2 to Table F-5 and figures showing comparisons of the historical data against the TVs are shown Appendix F, Figure F-1 to Figure F-36.

The assessment shows that in the upper river, risk to aquatic ecosystems is posed by cadmium and zinc in prawn abdomen at Wasiba and by cadmium, nickel and lead at Wankipe.

In the lower river, risk to aquatic ecosystems is posed by arsenic, cadmium, nickel, selenium and zinc in prawn abdomen at Bebelubi and by cadmium, nickel and lead in prawn abdomen at Tiumsinawam.

Table 7-14 Risk assessment – median tissue metal results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk (mg/kg wet wt.)

Site	Sample	n	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn		
Wasiba	Fish Flesh	22	0.03	0.003	0.01	0.15	0.08	0.01	0.01	0.32	4.2		
vvasiba	Prawn Abdo	26	0.04	0.05	0.02	6.7	0.01	0.01	0.02	0.57	16		
Monking	Fish Flesh	20	0.02	0.003	0.01	0.15	0.06	0.01	0.01	0.27	3.7		
Wankipe	Prawn Abdo	26	0.04	0.01	0.02	5.6	0.01	0.02	0.01	0.38	13		
Trigger Value	Fish Flesh		0.20	0.02	0.02	0.48	0.09	0.10	0.17	2.26	10.4		
Trigger Value	Prawn Abdo		0.05	0.01	0.11	9.82	0.01	0.02	0.01	0.43	16		
	Low risk = significantly < TV												
	Potential risk = significantly > TV OR not significantly different from TV												

Table 7-15 Risk assessment – median tissue metal results at lower river test sites in 2015 compared against LwRiv TVs showing which indicators pose low and potential risk (mg/kg wet wt.)

Site	Sample	n	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn		
Dahaluhi	Fish Flesh	0	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Bebelubi	Prawn Abdo	16	0.12	0.01	0.02	8.5	0.01	0.01	0.01	0.33	16		
Tivessia	Fish Flesh	18	0.01	0.003	0.01	0.09	0.09	0.01	0.01	0.16	3.6		
Tiumsinawam	Prawn Abdo	26	0.07	0.01	0.02	6.85	0.01	0.02	0.01	0.29	12		
Triange Value	Fish Flesh		0.07	0.01	0.03	0.17	0.12	0.03	0.17	2.26	4.8		
Trigger Value	Prawn Abdo		0.10	0.01	0.06	11.6	0.01	0.01	0.01	0.31	16		
	Low risk = significantly < TV												
	Potential risk = significantly > TV OR not significantly different from TV												

NS - Not sampled.

A summary of the analysis of trends for tissue metals in the upper and lower river between 2011 and 2015 are shown in Table 7-16 and Table 7-17, detailed results of the statistical analysis are shown in Appendix F, Table F-6 to F-9.

In the upper river test sites, the analysis shows nickel in prawn abdomen at Wankipe increased between 2011 and 2015. All other metals in the upper and lower river have either decreased or remained stable over the period.

Table 7-16 Comparison of tissue metal trends at upper river ref and test sites 2011 - 2015

Site	Sample	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn		
LinDiv Dof	Fish Flesh											
UpRiv Ref	Prawn Abdo											
Wasiba	Fish Flesh											
Wasiba	Prawn Abdo											
Mankina	Fish Flesh											
Wankipe	Prawn Abdo											
	No change or reduced over time											
	Increased over time											

Table 7-17 Comparison of tissue metal trends at lower river ref and test sites 2011 - 2015

Site	Sample	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn		
LwRiv Ref	Fish Flesh											
LWNIV NEI	Prawn Abdo											
Bebelubi	Fish Flesh											
	Prawn Abdo											
Tiumsinawam	Fish Flesh											
Humsmawam	Prawn Abdo											
	No change or reduced over time											
	Increased over time											

7.3.3.2 Lake Murray

Monitoring of prawn tissue metal concentrations at Lake Murray has not formed part of the historical monitoring program, and monitoring of fish tissue at Lake Murray has not been conducted since 2009 due to a lack of community support for the monitoring program. As a consequence, there are no recent data available for conducting a risk assessment of bioaccumulation of metals at Lake Murray.

7.3.4 Summary Physical and Chemical Toxicant Risk Assessment

This section presents a summary of the risk to aquatic ecosystems posed by each physical and chemical toxicant within the discharge and within the receiving environment. Table 7-19 to Table 7-21 provide risk assessment results for each physical and chemical toxicant in water, benthic sediment and fish tissue and prawn abdomen for the purposes of comparison throughout the receiving environment and between matrices.

7.3.4.1 pH

Discharge from the lime plant exhibits elevated pH as a result of rainfall runoff from the area contacting lime. The flow is relatively low compared to flows within the receiving environment and the receiving environment itself exhibits alkaline conditions due to the naturally occurring limestone geology in the contributing catchment. Therefore the risk posed by elevated pH in discharge from the lime plant is considered minor and localised, being restricted to the area immediately downstream of the discharge point.

The site achieved 93% compliance with the internal site-developed end of pipe criteria for pH in tailings, which reduces the dissolved/bioavailable concentration of metals in the tailings slurry. Although, a moderate proportion of cadmium (6.1%), nickel (24%) and zinc (9.4%) were present in dissolved forms throughout 2015, the pH of receiving river waters is neutral which reduces the potential for metals to be remobilised within the water column.

7.3.4.2 Total Suspended Solids

The tailings discharge and mine contact runoff water discharged from Yakatabari D/S 28 Level and Yunarilama/Yarik at Portal exhibit elevated TSS at concentrations that pose a potential risk to the receiving environment. The erodible dumps also contribute TSS to the river system.

The concentrations of TSS in the receiving environment at SG1 exceed the relevant TV and therefore pose a risk to the aquatic ecosystem at this location. Further downstream, the concentrations of TSS at all test sites are significantly lower than the TV, which indicates that TSS inputs from the mine are not causing elevated median TSS concentrations above reference conditions and therefore pose a low risk to aquatic ecosystems below SG1.

TSS at Avu exceeded the TV for Lake Murray and ORWBs. Avu is an oxbow lake and in the absence of reference or baseline data for ORWBs, the TV for ORWBs has been conservatively developed based on water quality data from the northern section of Lake Murray. Conditions within the ORWBs will be influenced by surface area, depth, temperature gradients within the water column and atmosphere, wind, rainfall/runoff and human activity, all of which function on a smaller scale than within Lake Murray, and in addition water quality within the ORWB will be influenced by overflow events from the adjacent Strickland River, if the river is rising and flooding into the oxbow, then TSS will be elevated within the oxbow.

In addition to the potential risks that TSS concentrations pose to the receiving environment, the relationship between sediment and metals is also an important factor in determining potential risks.

A number of factors will influence the relationship between sediment and metals in both the discharge from the mine and within the receiving environment: TSS concentration, particle size distribution, pH,

concentration of organic matter, sediment mineral type, the number of different metals present and the concentrations of those metals. This relationship is discussed further when assessing risks posed by metals in Section 7.3.4.3 to 7.3.4.12.

7.3.4.3 Silver (Ag)

Concentrations of dissolved silver in water and WAE silver in sediment discharged from the mine are less than the respective upper river TVs and therefore pose a low risk to the receiving environment. Concentrations of dissolved silver in water, WAE silver in benthic sediment and silver in fish and prawn tissue within the receiving environment are also less than the respective TVs indicating low risk. Overall the system wide risk posed by silver to aquatic ecosystems is considered low.

7.3.4.4 Arsenic (As)

Dissolved arsenic concentrations in contact runoff water discharged from the site pose a low risk to aquatic ecosystems downstream of the mine. This is reflected at all of the receiving environment test sites where dissolved arsenic concentrations in water also pose a low risk.

The concentration of WAE arsenic in the tailings solids is elevated compared to the upper river TV, but this is not reflected in benthic sediments within the receiving environment where WAE arsenic concentrations are less than their respective TVs and therefore pose low risk to aquatic ecosystems. WAE arsenic in benthic sediment exhibits a decreasing trend from SG2 in the upper river to Tiumsinawam in the lower river, concentrations then increase at SG5, Sth Lake, SG6 and Avu. However this increasing trend at the Lake Murray and ORWBs was not observed at Central Lake where the concentration of WAE in benthic sediment was the lowest of all the test sites in 2015.

Within the receiving environment it is expected that arsenic-enriched sediment within the tailings is diluted by natural sediments with low WAE arsenic concentrations. The size of the sediment particles and the velocity or energy of the flow throughout the receiving environment will dictate how this sediment is distributed throughout the receiving environment. In areas with high velocity, such as the upper rivers, a portion of the coarser particles will settle, especially during the falling stage of river flow following high rainfall, while the fine particles will remain in suspension. In the lower river, the finer suspended sediment particles will be deposited in the river channel and from the portion of river water entering the floodplain, Lake Murray and ORWBs where flow velocities reduce. This is shown in Table 7-18 where the average proportion of total sediment within each region that is classified as fine sediment (<63 μ m) increases as the rivers flow out of highlands and down to the lower river flood plain, Lake Murray and the ORWBs.

It is possible that a portion of the coarse fraction of arsenic-enriched tailings particles is settling in the upper river, and a portion of the fine fraction of arsenic enriched tailings particles remains in suspension in the upper river and begins to settle in the lower river at SG5, and southern Lake Murray and Avu. Similar trends were observed for WAE copper, WAE lead and WAE zinc in benthic sediment during 2015. This is consistent with CSIRO (1996) which concluded that treated tailings and incompetent waste rock are discharged from the mine predominantly as fine (more than 80% is <65 μ m in diameter) and that these fines are transported to the lower Strickland River, the Strickland/Fly floodplain and to the Fly River estuary. Tailings are the most metal-enriched fine fraction, so riverine transport of tailings is the major source of environmental risk (CSIRO 1996).

It is also possible that there is an additional non-PJV related source contributing metal-enriched sediment to the system which has not been identified by the PJV environmental monitoring program. It is most likely that a combination of these factors is contributing to the low WAE arsenic concentration in benthic sediment throughout the receiving environment.

In 2015 PJV continued the investigation into the behavior of metals within the receiving environment.

Table 7-18 Average proportion of total sediment fine sediment ($<63\mu m$) in the upper rivers, lower rivers and Lake Murray and ORWBs

Region	Average Proportion of Total Sediment in the Fine Fraction (% <63µm)
Upper River	37.8
Lower River	57.5
Lake Murray and ORWBs	87.6

Note - Calculated using 2015 data from test and reference sites within each region.

Arsenic in prawn abdomen at Bebelubi is statistically significantly greater than the lower river TV and confirms that arsenic is bioaccumulating at a higher rate than at the reference site at this location and poses a risk. It is notable however, that at Tiumsinawam some 60 km downstream from Bebelubi, arsenic concentration in prawn abdomen (0.07 mg/kg) was significantly less than the respective TV (0.10 mg/kg), indicating low risk. The exposure of prawns to arsenic typically occurs via contact with or ingestion of dissolved arsenic in water, WAE arsenic in benthic sediment or via the food web. Additionally, given the possibility that a proportion of arsenic-enriched tailings sediment will remain in suspension along the receiving river system, it is conceivable that arsenic associated with suspended sediment is an additional pathway of exposure for prawns at Bebelubi. Concentrations of dissolved arsenic in water and WAE arsenic in benthic sediment at Bebelubi are low risk, which indicates that a combination of arsenic associated with suspended sediment and arsenic within the food web are possibly contributing to elevated arsenic in prawn abdomen at this location.

It could be expected that prawns in the upper river at Wasiba and Wankipe would also exhibit elevated arsenic in abdomen tissue given that they are likely to be exposed to higher concentrations of arsenic in suspended sediment and the food web than prawns at Bebelubi. The factors for this inconsistency are not understood, however a contributing factor may be that different species of prawn are used for tissue analysis in the upper river (*Macrobrachium handschini*) and the lower river (*Macrobrachium rosenbergii*), with potentially different feeding habits and assimilative capacities. It should be noted that the concentrations of all metals within prawn and fish tissue at all sites within the upper and lower rivers are below applicable food standards and therefore do not pose a risk to human health if consumed. A comparison against food standards is provided in Section 7.6.

Overall, given that arsenic in prawn abdomen at Bebelubi is the only indicator of arsenic that exceeded a TV and that this was not observed 60 km downstream at Tiumsinawam, the system-wide risk posed by arsenic to aquatic ecosystems is considered low.

7.3.4.5 Cadmium (Cd)

Dissolved cadmium in tailings, and mine contact runoff water from Kogai Dump Toe and Wendoko D/S Anawe Nth pose a potential risk to the receiving environment, and this is reflected by elevated dissolved cadmium in water at SG1, approx 8km downstream of the mine on the Porgera River. However, at all sites downstream of SG1, dissolved cadmium concentrations in water pose low risk and exhibit a decreasing concentration with increasing distance from the mine. A combination of dilution and adsorption to particulate matter within the receiving environment rapidly reduces the concentration of dissolved cadmium in water.

WAE cadmium in tailings solids poses a potential risk to the receiving environment, however the concentrations of WAE cadmium in benthic sediment at all test sites within the receiving environment were significantly less than the TV indicating low risk. It is reasonable to expect that cadmium enriched

tailings sediment is diluted by natural sediments with low WAE cadmium concentrations. The fine fraction of cadmium enriched tailings sediments and enriched sediment resulting from the adsorption of dissolved cadmium in water will remain in suspension during river transport and a portion will settle in the lower river and ORWBs. However, it is also possible that there is an additional non-PJV related source contributing metal enriched sediment to the system which has not been identified by the PJV environmental monitoring program. It is most likely that a combination of these factors is contributing to the low WAE cadmium concentration in benthic sediment throughout the receiving environment.

Cadmium in prawn abdomen at Wasiba is significantly greater than the upper river TV, while cadmium in prawn abdomen at Wankipe, Bebelubi and Tiumsinawam are not significantly different from their respective TVs, all results indicate potential risk. Again, it should be noted that the concentrations of all metals within prawn and fish tissue at all sites within the upper and lower rivers are below applicable food standards and therefore do not pose a risk to human health if consumed. A comparison against food standards is provided in Section 7.6.

The behavior of cadmium within the receiving environment is the subject of ongoing investigation. However, given the low concentrations of dissolved cadmium in water and WAE cadmium in benthic sediment, and that cadmium in prawn abdomen at Wasiba was the only indicator which was statistically significantly greater than the TV downstream from SG1, the system-wide risk posed by cadmium to aquatic ecosystems is considered low.

7.3.4.6 Chromium (Cr)

The concentration of dissolved chromium in water discharged from the lime plant and Yakatabari D/S 28 level are elevated and pose a potential risk to the receiving environment. Within the receiving environment, the concentrations of dissolved chromium in water, WAE chromium in benthic sediment and chromium in fish flesh and prawn abdomen pose low risk.

Overall, the system-wide risk posed by chromium to aquatic ecosystems is considered low.

7.3.4.7 Copper (Cu)

Dissolved copper in tailings poses a potential risk to the receiving environment. Dissolved copper at all upper river test sites pose low risk. In the lower river at Bebelubi, the median dissolved copper concentration in water during 2015 is higher than the TV and at Tiumsinawam, the median dissolved copper concentration in water during 2015 is equal to the TV, both indicating potential risk. Statistical tests could not be applied for the lower river sites due to the low sample size (n). A combination of dilution and adsorption to particulate matter within the receiving environment rapidly reduces the concentration of dissolved copper in water. Earlier studies of copper speciation (Apte, 1995) and Cresswell (2013) showed that the majority of dissolved copper was present in non-labile form, and no ecotoxicological effects on aquatic life were expected.

WAE copper in tailings solids is elevated and poses a potential risk to the receiving environment. However, concentrations of WAE copper in benthic sediment at all test sites within the upper and lower river and Lake Murray and ORWBs are low risk. WAE copper in benthic sediment exhibits a decreasing trend from SG2 in the upper river to Tiumsinawam in the lower river, concentrations then increase at SG5, central and southern Lake Murray, SG6 and Avu.

It is reasonable to expect that copper-enriched tailings sediment is diluted by natural sediments with low WAE copper concentrations. The fine fraction of copper-enriched tailings sediments and enriched sediment resulting from the adsorption of dissolved copper from water will remain in suspension during river transport and a portion will settle in the lower river, southern and central Lake Murray and ORWBs. However, it is also possible that there is an additional non-PJV related source contributing metal enriched sediment to the system which has not been identified by the PJV environmental

monitoring program. It is most likely that a combination of these factors is contributing to the WAE copper concentration in benthic sediment throughout the receiving environment.

Copper concentrations in fish flesh and prawn abdomen at all test sites are below their respective TVs and are low risk.

Overall, given the low concentrations of dissolved copper in water, WAE copper in benthic sediment and copper in fish flesh and prawn abdomen, the system-wide risk of copper to aquatic ecosystems is considered low.

7.3.4.8 Mercury (Hg)

The concentrations of dissolved mercury in water discharged from the mine are below the upper river TV and therefore pose low risk to the receiving environment. This is reflected by low dissolved mercury concentrations in water throughout the receiving environment.

WAE mercury is elevated in tailings sediment and poses a potential risk to the receiving environment. However, WAE concentrations of mercury in benthic sediment throughout the receiving environment are low and pose low risk.

The concentration of mercury in fish flesh and prawn abdomen throughout the receiving environment poses low risk to aquatic ecosystems.

Overall the system-wide risk of mercury to aquatic ecosystems is considered low.

7.3.4.9 Nickel (Ni)

The concentration of dissolved nickel in tailings poses a potential risk to aquatic ecosystems downstream of the mine. However, the concentration of dissolved nickel at all receiving environment sites poses low risk. A combination of dilution and adsorption to particulate matter within the receiving environment rapidly reduces the concentration of dissolved nickel in water.

WAE nickel in sediment discharged from the site is highest in tailings solids, however none of the discharge sites exceed the TV and therefore all pose a low risk to the aquatic ecosystem in the receiving environment. WAE nickel in benthic sediment within the upper rivers is also low risk. Concentrations of WAE nickel in benthic sediment display an increasing trend with distance from the mine, concentrations at Bebelubi and Tiumsinawam in the lower river are low risk, but at SG5 further downstream, WAE nickel concentrations increase significantly to exceed the lower river TV, and also exceed the concentration in tailings solids. Similarly, concentrations of WAE nickel in benthic sediment in central and southern Lake Murray and Avu exceed the TV for Lake Murray and ORWBs, and are also greater than concentrations in the tailings solids.

It is possible that a proportion of the dissolved nickel in water that is adsorbed to sediment, and along with a proportion of nickel-enriched tailings solids are contributing to WAE nickel concentrations in benthic sediment in the lower river, Lake Murray and ORWBs. WAE nickel in sediment is being contributed to the system from the upper river reference sites and it is also possible that elevated WAE nickel in benthic sediment at SG5 and Lake Murray and ORWBs is the result of contributions of enriched WAE nickel in sediment to the lower Strickland River from non-PJV related sources which have not been identified by the PJV environmental monitoring program. Nickel is included in the ongoing investigation of the behavior of metals within the receiving environment.

Nickel is elevated in prawn abdomen at Wankipe in the upper river and at Bebelubi in the lower river but not significantly different from their respective TVs, and at Tiumsinawam in the lower river, nickel in prawn abdomen is greater than the TV. These results indicate that nickel is bioaccumulating in prawn abdomen at a greater rate than at respective reference sites and poses potential risk to aquatic ecosystems at these locations.

Overall, given the elevated concentrations of dissolved nickel in tailings, the potential risk indicated by elevated WAE nickel in benthic sediment at SG5 and Lake Murray and ORWBs, the potential risk indicated by nickel in prawn abdomen at Bebelubi and Tiumsinawam, nickel is considered to pose a potential system-wide risk to aquatic ecosystems. Further investigation is required to determine the concentration of WAE nickel in the fine fraction of tailings sediment and the relative contribution of tailings to the WAE nickel concentrations in lower river benthic sediments.

7.3.4.10 Lead (Pb)

Concentration of dissolved lead in water discharged from the site poses low risk, and is reflected by low concentrations of dissolved lead in water, and therefore low risk to aquatic ecosystems throughout the receiving environment.

Sediment with WAE lead concentrations greater than the upper river TV is discharged from a number of sites, the highest being Yakatabari DS 28 Level and the lowest being tailings solids. In the upper river, the concentrations of WAE lead in benthic sediment pose a risk to aquatic ecosystems at SG1, SG2, Wasiba and Wankipe, the latter being not significantly different from the TV. From SG1 downstream to Tiumsinawam, the concentration of WAE lead in benthic sediment exhibits a decreasing trend with increasing distance from the mine. Concentrations then increase at SG5, central and southern Lake Murray and SG6, but remain less than their respective TVs. WAE lead concentrations at Avu are greater than the TV for Lake Murray and ORWBs indicating potential risk to aquatic ecosystems at this location.

It is possible that lead enriched fine sediment from the mine is being transported to the lower Strickland River, Lake Murray and ORWBs. It is also possible that there are non-PJV related inputs of WAE lead in benthic sediment in the system. Lead is included in the ongoing investigation of the behavior of metals within the receiving environment.

Lead in prawn abdomen at Wasiba was significantly greater than the TV, and at Wankipe and Tiumsinawam was not significantly different from their respective TVs, indicating potential risk to aquatic ecosystems at these locations. Again, it should be noted that the concentrations of all metals within prawn and fish tissue at all sites within the upper and lower rivers are below applicable food standards and therefore do not pose a risk to human health if consumed. A comparison against food standards is provided in Section 7.6.

Overall, given the elevated concentrations of WAE lead in sediments discharged from the mine, the potential risk indicated by elevated WAE lead in benthic sediment at SG1, SG2, Wasiba, Wankipe and Avu, the potential risk indicated by lead in prawn abdomen at Wasiba, Wankipe and Tiumsinawam, lead is considered to pose a potential system-wide risk to aquatic ecosystems.

7.3.4.11 Selenium (Se)

Dissolved selenium in water and WAE selenium in sediment discharged from the site are both below the respective upper river TVs and therefore pose low risk to aquatic ecosystems. This is reflected in the receiving environment by low concentrations of dissolved selenium in water and WAE selenium in benthic sediment at all sites, indicating low risk.

Selenium in prawn abdomen at Wasiba was significantly greater than the TV, and at Bebelubi was not significantly different from the TV, indicating potential risk to aquatic ecosystems at these locations. Again, it should be noted that the concentrations of all metals within prawn and fish tissue at all sites within the upper and lower rivers are below applicable food standards and therefore do not pose a risk to human health if consumed. A comparison against food standards is provided in Section 7.6.

Overall, given the low concentration of dissolved selenium in water and WAE selenium in minederived sediments and throughout the receiving environment, and selenium in prawn abdomen at Wasiba and Bebelubi are the only indication of potential risk, the system-wide risk of selenium is considered low.

7.3.4.12 Zinc (Zn)

The concentrations of dissolved zinc in tailings and in water discharged from Kogai Dump Toe and Wendoko D/S Anawe Nth are greater than the upper river TV and pose potential risk to aquatic ecosystems in the receiving environment. This is reflected by elevated dissolved zinc in water at SG1 which exceeds the upper river TV and indicates potential risk. From SG2 in the upper river downstream to the lower river and Lake Murray and ORWBs, dissolved zinc in water poses low risk and shows decreasing concentrations with increasing distance from the mine. A combination of dilution and adsorption to particulate matter within the receiving environment rapidly reduces the concentration of dissolved zinc in water.

Sediment with WAE zinc concentrations greater than the upper river TV is discharged from a number of sites, the highest being tailings solids and the lowest being Kogai Dump Toe. However, concentrations of WAE zinc in benthic sediment at all test sites within the receiving environment are below their respective TVs and therefore pose low risk. From SG1 downstream to Tiumsinawam, the concentration of WAE zinc in benthic sediment decreases with increasing distance from the mine. Concentrations then increase at SG5, central and southern Lake Murray, SG6 and Avu.

It is possible that a proportion of the dissolved zinc in water that is adsorbed to sediment, along with a proportion of zinc enriched tailings solids contributed to WAE zinc concentrations in benthic sediment in the lower river, and Lake Murray and ORWBs. It is also possible that elevated WAE zinc in benthic sediment at SG5 and Lake Murray and ORWBs is the result of contributions of enriched WAE zinc in sediment to the lower Strickland River from non-PJV related sources which have not been identified by the PJV environmental monitoring program. Zinc is included in the ongoing investigation of the behavior of metals within the receiving environment.

Zinc concentrations in prawn abdomen at Wasiba and Bebelubi are not significantly different from their respective TVs, indicating potential risk to aquatic ecosystems at these locations.

Overall, given the low concentration of dissolved zinc in water downstream from SG1, low WAE zinc concentrations in sediment throughout the receiving environment, and that the zinc concentrations in prawn abdomen at Wasiba and Bebelubi are not significantly different from their respective TVs, the system-wide risk of zinc to aquatic ecosystems is considered low.

Table 7-19 Summary of mine discharge water quality compared against respective TVs and receiving environment water quality risk assessment results, showing indicators in discharge and test sites that pose potential risk to the receiving environment 2015 (μg/L except where shown)

Danian	Oir-	WATER												
Region	Site	pH^	TSS*	Ag-D	As-D	Cd-D	Cr-D	Cu-D	Hg-D	Ni-D	Pb-D	Se-D	Zn-D	
	Tailings	6.4	161,000	0.05	0.29	73	0.10	30	0.10	1,600	0.10	2.4	19,000	
	28 Level	7.7	78	0.05	1.9	0.07	0.10	0.50	0.05	6.4	0.10	0.20	12	
	SDA Toe	7.6	76	0.05	0.8	0.05	0.11	0.84	0.05	0.70	0.62	0.21	6.7	
	Kaiya Riv D/S Anj Dump	7.5	291	0.05	1.0	0.05	0.10	0.56	0.05	0.63	0.17	0.42	4.0	
Discharge	Kogai Culvert	7.7	180	0.05	1.2	0.06	0.11	1.0	0.05	0.74	0.38	0.20	10	
Discharge	Kogai dump toe	7.6	68	0.05	0.7	1.8	0.10	0.63	0.05	2.3	0.52	0.20	350	
	Lime Plant	11.2	382	0.05	0.2	0.05	3.4	0.60	0.05	0.50	0.10	0.20	0.90	
	Wendoko Crk D/S Anawe Nth	7.6	57	0.05	1.1	0.76	0.10	0.64	0.05	1.8	0.26	0.64	310	
	Yakatabari D/S 28 Level	7.6	6,273	0.05	13.0	0.05	1.4	0.91	0.05	1.6	1.4	0.36	6.6	
	Yunarilama/Yarik @ Portal	7.4	8,415	0.05	3.2	0.10	0.14	0.67	0.05	4.1	0.46	0.96	6.3	
	SG1	7.4	6,498	0.05	1.5	1.4	0.10	1.8	0.05	3.5	0.18	0.25	31	
	SG2	7.5	1,831	0.05	1.3	0.22	0.14	1.6	0.05	1.5	0.10	0.20	7.7	
	Wasiba	7.4	1,413	0.05	1.8	0.15	0.20	1.6	0.05	1.1	0.10	0.20	5.4	
Upper River	Wankipe	7.5	820	0.05	1.7	0.13	0.20	1.4	0.05	0.98	0.10	0.20	5.0	
	SG3	7.6	1,133	0.05	1.7	0.07	0.17	1.6	0.05	0.67	0.10	0.20	4.3	
	Bebelubi	7.3	353	0.05	1.6	0.08	0.20	1.5	0.05	0.51	0.10	0.20	5.6	
Lower River	Tiumsinawam	7.4	516	0.05	1.3	0.07	0.17	1.4	0.05	0.50	0.11	0.20	4.9	
	SG5	7.3	336	0.05	1.0	0.05	0.13	1.1	0.05	0.50	0.10	0.20	1.5	
	Central Lake	6.6	9.0	0.05	0.31	0.05	0.10	0.60	0.05	0.50	0.10	0.20	2.5	
	Southern Lake	7.0	11	0.05	0.91	0.05	0.10	0.90	0.05	0.50	0.10	0.20	2.2	
Lake	SG6	6.6	17	0.05	0.92	0.05	0.12	0.96	0.05	0.50	0.10	0.20	2.9	
Murray and ORWBs	Kukufionga						No data col	lected in 20)15					
	Zongamange						No data col	lected in 20)15					
	Avu	6.9	62	0.05	3.4	0.05	0.16	1.1	0.06	0.88	0.38	0.20	2.4	

[^] std units, * mg/L

Table 7-20 Summary of mine discharge sediment quality compared against respective TVs and receiving environment sediment quality risk assessment results, showing indicators in discharge and test sites that pose low and potential risk to the receiving environment 2015 (mg/kg whole sediment)

		SEDIMENT											
Region	Site	Ag – WAE	As - WAE	Cd - WAE	Cr- WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE		
	Tailings	0.50	74	4.0	22	84	0.16	22	74	0.50	680		
	28 Level	1.3	7.9	1.0	13	18	0.01	19	140	0.50	580		
	SDA Toe	0.50	4.7	0.70	3.3	5.1	0.01	5.4	98	0.50	110		
	Kaiya Riv D/S Anj Dump	0.50	4.5	0.50	3.7	5.2	0.01	5.4	120	0.50	69		
Disabanna	Kogai Culvert	0.50	8.9	0.69	2.6	4.2	0.01	3.0	100	0.50	100		
Discharge	Kogai dump toe	0.50	10	1.4	4.1	5.9	0.01	4.6	160	0.50	200		
	Lime Plant	0.50	0.57	0.50	8.7	2.4	0.01	2.1	3.5	0.50	15		
	Wendoko Crk D/S Anawe Nth	0.50	7.5	1.4	2.1	7.2	0.01	4.0	78	0.50	210		
	Yakatabari DS 28 Level	1.1	16	1.4	4.5	13	0.01	6.9	260	0.50	240		
	Yunarilama/Yarik @ Portal	0.50	6.3	0.63	4.4	5.0	0.01	5.2	79	0.50	110		
	SG1	0.50	5.5	0.82	3.8	6.3	0.01	5.1	125	0.50	114		
	SG2	0.50	6.9	0.90	5.9	14	0.02	6.7	71	0.50	130		
Upper River	Wasiba	0.50	6.3	0.71	4.0	10	0.01	12	54	0.50	81		
Upper River	Wankipe	0.50	6.0	0.59	3.8	10	0.01	8.4	44	0.50	78		
	SG3	0.50	3.4	0.50	6.2	6.5	0.01	18	13	0.50	44		
	Bebelubi	0.50	3.4	0.50	6.2	6.5	0.01	18	13	0.50	44		
Lower River	Tiumsinawam	0.50	2.3	0.50	3.8	6.4	0.01	9.0	9.4	0.50	34		
	SG5	0.50	4.2	0.50	21	13	0.01	38	19	0.50	120		
	Central Lake	0.50	1.6	0.50	20	17	0.08	24	15	0.50	86		
	Southern Lake	0.50	4.7	0.50	22	22	0.06	30	30	0.50	110		
Lake Murray	SG6	0.50	8.8	0.50	21	22	0.02	32	33	0.50	120		
and ORWBs	Kukufionga	No data collected in 2015											
	Zongamange				N	o data colle	ected in 20	15					
	Avu	0.50	9.7	0.62	21	24	0.02	34	62	0.5	170		

WAE - Weak acid extraction

Table 7-21 Summary of receiving environment water quality, sediment quality and tissue metals risk assessment results, showing indicators at test sites that pose low and potential risk to the receiving environment 2015

Dogion	Cito	Indicator	Unit	Water, Sediment, Tissue Metal Combined											
Region	Site	illuicatoi	Oiiit	pH^	TSS	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
		Water-D	μg/L	7.4	1,413	0.05	1.8	0.15	0.20	1.6	0.05	1.1	0.10	0.20	5.4
	Wasiba	Sed-WAE	mg/kg	-	-	0.50	6.3	0.71	4.0	10	0.01	12	54	0.50	81
Upper River	Wasiba	Fish Flesh	mg/kg	-	-	-	0.03	0.003	0.01	0.15	0.08	0.01	0.01	0.32	4.2
		Prawn Abdo	mg/kg	-	-	-	0.04	0.05	0.02	6.7	0.01	0.01	0.02	0.57	16
		Water-D	μg/L	7.5	820	0.05	1.7	0.13	0.20	1.4	0.05	0.98	0.10	0.20	5.0
	Wankipe	Sed-WAE	mg/kg	-	-	0.50	6.0	0.59	3.8	10	0.01	8.4	44	0.50	78
		Fish Flesh	mg/kg	-	-	-	0.02	0.003	0.01	0.15	0.06	0.01	0.01	0.27	3.7
		Prawn Abdo	mg/kg	-	-	-	0.04	0.01	0.02	5.6	0.01	0.02	0.01	0.38	13
		Water-D	μg/L	7.3	353	0.05	1.6	0.08	0.20	1.5	0.05	0.51	0.10	0.20	5.6
	Dobolubi	Sed-WAE	mg/kg	-	-	0.50	3.4	0.50	6.2	6.5	0.01	18	13	0.50	44
	Bebelubi	Fish Flesh	mg/kg	-	-	-	NS	NS	NS	NS	NS	NS	NS	NS	NS
Lower		Prawn Abdo	mg/kg	-	-	-	0.12	0.01	0.02	8.5	0.01	0.01	0.01	0.33	16
River		Water-D	μg/L	7.4	516	0.05	1.3	0.07	0.17	1.4	0.05	0.50	0.11	0.20	4.9
	Tiumsina	Sed-WAE	mg/kg	-	-	0.50	2.3	0.50	3.8	6.4	0.01	9.0	9.4	0.50	34
	wam	Fish Flesh	mg/kg	-	-	-	0.01	0.003	0.01	0.09	0.09	0.01	0.01	0.16	3.6
		Prawn Abdo	mg/kg	-	-	-	0.07	0.01	0.02	6.85	0.01	0.02	0.01	0.29	12

^{*} std units; * mg/L

7.4 Local Water Supplies

Participatory sampling of local village water supplies was carried out at four Special Mining Lease Villages (Yarik, Apalaka, Panadaka and Kulapi) in September 2015 to assess suitability of water for domestic use. The sampling was arranged in consultation with the Porgera Land Owners Association (PLOA), who participated in the sampling of the water supplies. Samples were collected from drinking water sites including tanks, a drum and two springs, as well as creeks that are commonly used by local villagers for laundry, bathing, panning for gold or other water-based activities. Sampling sites and details are listed in Table 7-22 and locations are shown on Figure 7-15.

The samples were prepared at the PJV onsite laboratory for dispatch to external laboratories. Samples for biological analysis were sent to SGS laboratory in Port Moresby, Papua New Guinea, while samples requiring trace metals tests were sent to National Measurement Institute (NMI) laboratory in Sydney, Australia. Physico-chemical analyses were conducted at the onsite laboratory.

Table 7-22 Sampling sites for Local Village Water Supplies 2015

Sites	Name on map	Easting	Northing
Market Store	NA	NA	NA
Apalaka H1 Tank	AP_H1	9397663	731732
Apalaka H2 Tank	AP_H2	9397668	731751
Yarik H1 Tank	YR_H1	9397172	732549
Yarik H2 Tank	YR_H2	9397157	732803
Yarik H3 Tank	YR_H3	9397392	732845
Yarik School Tank	Yarik School	9397325	733329
Kulapi V1 H1 drum	KL_V1H1	9394334	733261
Kulapi V2 H 1 tank	KL_V2H1	9394495	733045
Kulapi V4 H1 tank	KL_V4H1	9394700	732772
Panadaka 1 Joseph and Rueben Kiala Tank	PA_V1H8	9395580	733706
Panadaka 1 Joseph Kiala Tank	PA_V1H9	9395509	733541
Panadaka 1 Bilip Aile Tank	PA_V1H6	9395610	733666
Panadaka 1 Panda Ekepa Tank	PA_V1H3	9395508	733674
Panadaka 1 Catholic Church Tank	PA_V1H2	9395447	733689
Panadaka 1 John Pokean Tank	PA_V1H5	9395598	733582
Panadaka 1 Roselyn Pokean Tank	PA_V1H7	9395618	733682
Panadaka 1 United Church Tank	PA_V1H10	9395573	733761
Panadaka 1 Jack Inji Tank	PA_V1H1	9395455	733689
Panadaka 1 Neslon Nai Tank	PA_V1H11	9395447	733606
Panadaka 1 Bus David Yandapa Tank	PA_V1H4	9895578	733584
Panadaka 2 Timothy Kerene Tank	PA_V2H4	9395743	733784
Panadaka 2 Nickson Yambu Tank	PA_V2H2	9395857	733795
Panadaka 2 Akena Pawa Tank	PA_V2H1	939577	733837

Sites	Name on map	Easting	Northing
Panadaka 2 Tomson Kuna Tank	PA_V2H3	9395786	733792
Wendako Spring	Wendako Spring	9394941	734120
Alipis Tank 1	AL_T1	9395686	733348
Alipis Tank 2	AL_H2	9395775	733346
Alipis Tank 3	AL_H3	9395775	733346

The water quality test results for raw drinking water sites are presented in Table 7-23 and Table 7-24 and show the following exceedances of the PNG Raw Drinking Water Standard: low pH at 3 tanks; elevated alkalinity at Wendako Spring; elevated total solids at two tanks; elevated turbidity at 1 tank and bacterial contamination at 13 locations. Dissolved metals were very low in all of the water supplies sampled. The high number of water supply samples with bacterial contamination is very surprising given the very low level of contamination observed in the previous two years. The poor water quality is considered to be related to the drought conditions and very low water levels in the tanks, with some at or near empty during sampling in September. This restricted the ability to flush the taps adequately before sample collection and bacteria on the tap surface is likely a significant source of contamination. PJV will investigate this issue and will ensure that the taps are sterilized before sample collection for bacteriological analysis.

PJV has implemented a supplementary water project involving the installation of a minimum of 10 tanks at each of six villages to improve the availability and reliability of safe drinking water for local communities. The project has received strong community support and village water committees have been established to carry out maintenance of the infrastructure.

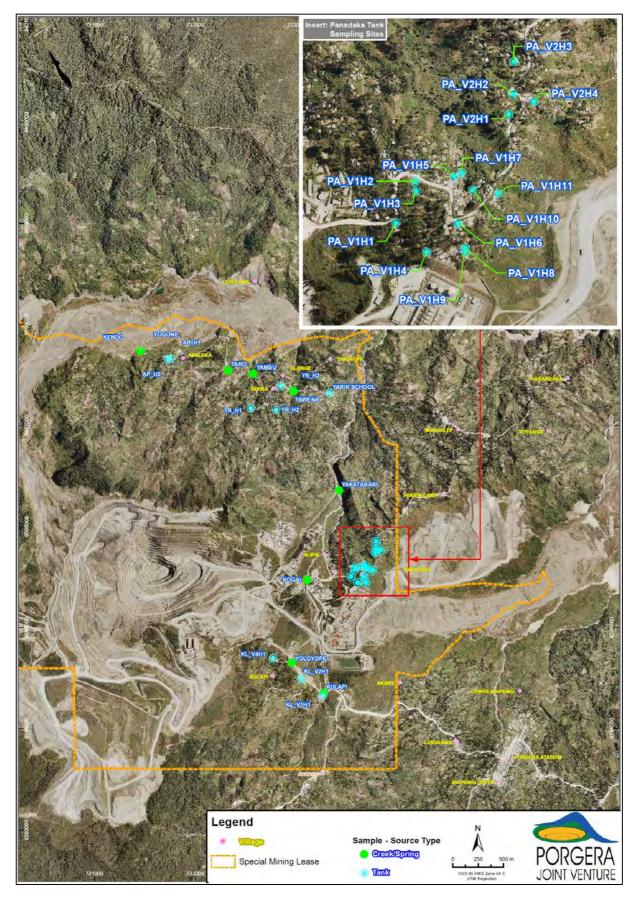


Figure 7-15 Sampling sites for local village water supplies

Table 7-23 Physiochemical and biological water quality at drinking water sites against PNG Raw Drinking Water Quality Standard 2015

Site	рН	Conductivity	TSS	Sulfate	Chloride	Alkalinity	Total Solids	Turbidity	Color	Faecal Coliforms	Total Coliforms
Units	SU	(μS/cm)	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	hazen	(cfu/100mL)	(cfu/100mL)
Market Store	6.1	11	2.0	1.0	2.7	14	10	0.2	5	1.0	15
Apalaka H1 Tank	5.3	12	1.0	2.0	3.4	11	5.0	1.2	5	0	2
Apalaka H2 Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Yarik H1 Tank	7.0	8.5	11	1.0	2.7	11	180	1.1	5	0	NR
Yarik H2 Tank	6.6	7.7	0.0	0.0	2.7	11	5.0	1.3	5	20	23
Yarik H3 Tank	6.2	12	11	7.0	2.7	25	5.0	1.3	5	6.0	111
Yarik School Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Kulapi V1H1 Drum	7.1	35	1.0	0.0	3.4	25	5.0	1.3	5	0	0
Kulapi V2H1 Tank	7.2	14	7.0	0.0	3.4	22	5.0	1.5	5	1.0	1
Kulapi V4H1 Tank	6.9	10	0.0	0.0	2.7	11	5.0	1.1	5	25	29
Panandaka 1 J and R Kiala	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Joseph Kiala	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 Bilip Aile Tank	7.1	11	0.0	1.0	3.4	14	5.0	1.6	5	3.0	5
Panandaka 1 P Ekepa	7.4	14	0.0	1.0	2.7	11	5.0	1.4	5	26	30
Panadaka 1 Cath Ch Tank	7.8	17	10	6.0	4.7	16	5.0	1.3	5	0	3
Panandaka 1 J Pokean	6.8	85	1010	1.0	2.7	47	1200	90	5	3.0	121
Panandaka 1 R Pokean	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 1 U Ch Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Jack Inji	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Nelson Nai	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 BDY Tank	7.1	18	0.0	1.0	2.7	19	5.0	1.5	5	2.0	3
Panandaka 2 T Kerene	6.5	15	1.0	1.0	2.7	11	5.0	1.5	5	27	64
Panandaka 2 N Yambu	6.8	14	0.0	0.0	2.7	14	5.0	1.2	5	0	12
Panandaka 2 Akena Pawa	6.9	17	0.0	1.0	2.7	14	5.0	1.2	5	1	1
Panandaka 2 T Kuna	6.7	7.8	0.0	0.0	2.7	14	5.0	1.2	5	40	61
Wendako Spring	7.3	360	4.0	5.0	3.4	216	150	2.3	5	99	101
Alipis Tank 1	7.5	16	5.0	1.0	2.7	14	5.0	1.5	5	0	0
Alipis Tank 2	7.2	15	9.0	1.0	2.7	11	5.0	1.1	5	0	0
Alipis Tank 3	7.0	19	1.0	1.0	2.7	14	5.0	1.2	5	0	3.0
PNG (1984)	6.5 - 9.2	-	-	250	250	200	500	<5	15	0	<10
Compliant				•						•	

PNG (1984), PNG Public Health (Drinking Water) Regulation 1984. Schedule 1 Standards for Raw Water.

NS - Not Sampled, NA - Not Applicable

Non-compliant

Table 7-24 Metal concentrations at drinking water sites against PNG Raw Drinking Water Quality Standard 2015 (ug/L)

Site	A	s	Cd		Cu		Pb		Hg		Ni		Se		Zn	
Site	D	Т	D	Т	D	Т	D	T	D	Т	D	Т	D	Т	D	Т
Market Store	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Apalaka H1 Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Apalaka H2 Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Yarik H1 Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Yarik H2 Tank	0.3	0.2	0.1	0.1	2.1	1.9	0.3	0.2	0.05	0.05	0.5	0.5	0.2	0.2	160	160
Yarik H3 Tank	0.1	0.1	0.1	0.14	0.5	0.5	0.1	0.1	0.05	0.05	0.5	0.5	0.2	0.2	390	410
Yarik School Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Kulapi V1H1 Drum	0.13	0.1	0.1	0.1	0.5	0.5	0.1	0.1	0.05	0.05	0.5	0.5	0.2	0.2	710	660
Kulapi V2H1 Tank	0.1	0.1	0.1	0.1	0.5	0.5	0.1	0.1	0.05	0.05	0.5	0.5	0.2	0.2	110	100
Kulapi V4H1 Tank	0.1	0.13	0.1	0.1	0.5	0.5	0.2	0.2	0.05	0.05	0.5	0.5	0.2	0.2	260	240
Panandaka 1 J and R Kiala	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Joseph Kiala	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 Bilip Aile Tank	0.1	0.15	0.1	0.1	2.6	2.6	0.2	0.1	0.05	0.05	0.5	0.5	0.2	0.2	490	460
Panandaka 1 P Ekepa	0.1	0.1	0.1	0.1	1.3	0.9	0.2	0.1	0.05	0.05	0.5	0.5	0.2	0.2	1440	1400
Panadaka 1 Cath Ch Tank	0.1	0.13	0.1	0.1	1.6	1.5	0.3	0.2	0.05	0.05	0.5	0.5	0.2	0.2	1490	1520
Panandaka 1 J Pokean	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 R Pokean	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 1 U Ch Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Jack Inji	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 1 Nelson Nai	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panadaka 1 BDY Tank	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 2 T Kerene	0.6	0.6	0.1	0.1	3.3	3.5	0.5	0.7	0.05	0.05	0.5	0.5	0.2	0.2	850	830
Panandaka 2 N Yambu	0.4	0.4	0.1	0.1	3.2	3.1	0.2	0.2	0.05	0.05	0.5	0.5	0.2	0.2	370	340
Panandaka 2 Akena Pawa	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Panandaka 2 T Kuna	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Wendako Spring	0.1	0.2	0.1	0.1	0.5	0.5	0.1	0.1	0.05	0.05	0.5	0.5	0.2	0.2	5.7	2.3
Alipis Tank 1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Alipis Tank 2	0.3	0.6	0.1	0.4	0.7	1.1	1.9	20	0.05	0.05	0.5	0.5	0.2	0.2	1230	2200
Alipis Tank 3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
PNG (1984)	7	NA	2	NA	1,000	NA	10	NA	1	NA	20	NA	10	NA	3,000	NA
Compliant																
																

PNG (1984), PNG Public Health (Drinking Water) Regulation 1984. Schedule 1 Standards for Raw Water.

D – Dissolved, T – Total, NS – Not Sampled, NA – Not Applicable

Non-compliant

7.5 Water-based activities

Various water-based activities undertaken by local community's results in contact with water: gold panning, bathing, fishing and swimming. To assess the potential health risks, the median pH and concentration of dissolved metals in the tailings discharge and at test sites within the receiving environment for 2015 are compared against the ANZECC/ARMCANZ (2000) Recreation guideline and the PNG Raw Drinking Water Quality Standard in Table 7-25.

The results show that pH and concentrations of dissolved cadmium, dissolved iron, dissolved nickel and dissolved zinc in tailings exceed the guideline values and therefore indicate potential risk to anyone exposed to the undiluted tailings slurry.

At all test sites within the upper and lower river there is low risk to human health from exposure to dissolved metals during the various activities that involve with contact with water - gold panning, bathing, fishing and swimming. Exposure patterns obviously differ greatly along the Porgera, Lagaip and Strickland rivers downstream of the mine. River use in the mountain section above the Strickland Gorge is primarily for gold panning, with little use for subsistence fishing or other activities. Along the Lower-Strickland and at Lake Murray, people regularly use the waterways as a transportation corridor, for subsistence fishing and harvesting of sago crops, washing of clothes and bathing. Although lowland communities have significantly greater exposure, the very low concentrations of dissolved metals pose low risk to human health.

Table 7-25 Comparison of 2015 median receiving water quality values with recreational exposure guidelines ($\mu g/L$)

Site	n	pH^	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Fe- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D
Tailings	47	6.4	0.05	0.29	73	0.10	30	5,400	0.10	1,600	0.10	2.4	19,000
SG1	6	7.4	0.05	1.5	1.4	0.1	1.8	14.3	0.05	3.5	0.18	0.25	31
SG2	14	7.5	0.05	1.3	0.22	0.14	1.6	6.3	0.05	1.5	0.10	0.20	7.7
Wasiba	15	7.4	0.05	1.8	0.15	0.20	1.6	3.3	0.05	1.1	0.10	0.20	5.4
Wankipe	15	7.5	0.05	1.7	0.13	0.20	1.4	3.3	0.05	0.98	0.10	0.20	5.0
SG3	192	7.6	0.05	1.7	0.07	0.17	1.6	4.8	0.05	0.67	0.10	0.20	4.3
ANZECC / ARMCANZ 2000 Recreation	_'	6.5 - 8.5	50	50	5.0	50	1,000	300	1.0	100	50	10	5,000
PNG Raw Drinking V Quality Standard	/ater	6.5 - 9.2	50	7.0	2.0	50	1,000	1,000	1.0	20	10	10	3,000
<	Guideli	ne = Lo	w risk										

^ std units

≥ Guideline = Potential risk

7.6 Fish and Prawn Consumption

Median tissue metal concentrations in fish flesh and prawn abdomen are compared against relevant food standards in Table 7-26. The results show that all tissue metals at all locations were below the relevant food standard. Although dietary intake of fish and prawns differs greatly between the mountain and lowland sections of the river, the results show that tissue metals in fish flesh and prawn abdomen pose a low risk to human health.

Table 7-26 Risk assessment – median tissue metal results at upper river test sites in 2015 compared against UpRiv TVs showing which indicators pose low and potential risk (mg/kg wet wt.)

Site	Sample	n	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
\\\	Fish Flesh	22	0.03	0.003	0.01	0.15	0.08	0.01	0.01	0.32	4.2
Wasiba	Prawn Abdo	26	0.04	0.05	0.02	6.7	0.01	0.01	0.01	0.57	16
)A/ =1-i	Fish Flesh	20	0.02	0.003	0.01	0.15	0.06	0.01	0.01	0.27	3.7
Wankipe	Prawn Abdo	26	0.04	0.01	0.02	5.6	0.01	0.02	0.01	0.38	13
Dahahi:	Fish Flesh	0	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bebelubi	Prawn Abdo	16	0.12	0.01	0.02	8.5	0.01	0.01	0.01	0.33	16
Tium-	Fish Flesh	18	0.01	0.003	0.01	0.09	0.09	0.01	0.01	0.16	3.6
sinawam	Prawn Abdo	26	0.07	0.01	0.02	6.85	0.01	0.02	0.01	0.29	12
Food	Fish		2.0	0.05	1.0	2.0	0.50	NA	0.30	2.0	15
Std	Prawn		2.0	0.50	1.0	20	0.50	NA	0.50	1.0	40
	Compliant										
	Non-compliant										

As - Food Standard Australia New Zealand 1.4.1 (ANZFS 2016),

Cd, Hg, Pb - European Food Safety Authority (EC 2006)

Cr – Hong Kong Food Adulteration (Metallic Contamination) Regulations (HK 1997)

Cu, Se, Zn – Food Standards Australia New Zealand GEL 90%ile (ANZFA 2001)

NS - Not sampled

7.7 Air Quality

PJV carried out monitoring of concentrations of metals in the emissions from stationary sources at the mine site, the Lime Plant and at Hides Power Station in 2015. Papua New Guinea does not have legislation for controlling emissions to air and PJV has voluntarily set a target of complying with the relevant Australian Standards, which are the NSW Protection of the Environment Operations (Clean Air) Regulation 2010 and the Victoria State Environment Protection Policy (Air Quality Management) 2001. A comparison of results against the standards is presented in Table 7-27. The results show particulate matter in emissions from the Lime Kiln No 2 and NO_x in emissions from the Anawe Diesel Generator exceeded the target.

Table 7-27 Point source emission metal concentrations 2015 (mg/m³)

Source	Particulate Matter	NO _x	As	Cd	Pb	Ni	Hg	SO ₃
Anawe Diesel Generator	14.5	2,201	0.0047	0.00012	0.020	0.0043	0.00071	15.4
Assay Laboratory	6.4	NA	0.0052	0.0014	0.90	0.0095	0.0013	NA
Anawe Autoclaves	57.2	2.1	0.064	0.008	0.12	0.135	0.041	92
Kiln Carbon Regeneration	93	99	0.015	0.10	0.20	0.169	0.038	NA
Gold Room Retort	3.3	2.1	0.0085	0.00090	0.0045	0.00045	0.363	0.24
Lime Kiln No 2	2,339	46	0.012	0.0093	0.029	0.0067	0.0052	NA
Primary Crusher	4.0	NA	0.0044	0.00062	0.027	0.0022	0.00037	NA
Hides Gas Turbine	12	287	0.012	0.00066	0.12	0.0075	0.00079	4.3
Haul Truck 69	29	NA	0.0020	0.009	0.60	0.0059	0.0056	8.2
Criterion	500	1,000	10	3.0	10	20	3.0	200
Comp	Compliant							
Non-0	Non-Compliant							

As, Cd, Pb, Ni SO₃, PM, NOx – Victoria State Environment Protection Policy (Air Quality Management) 2001 Schedule D

Hg - New South Wales Protection of the Environment Operations (Clean Air) Regulation 2010

8 IMPACT ASSESSMENT

As discussed in Section 2.6, the inherent variability of the historical data set for biological indicators does not support the assessment method used for water, sediment and tissue metal, whereby impact assessment criteria are generated using the most recent 24-month data set, and test site medians (TSMs) are generated from the 2015 data set.

Therefore, to improve the applicability of the data, the historical data set has been amalgamated to identify long-term trends for each of the biological indicators, and impact assessment has been conducted based on a comparison of indicators between reference and test sites. However, it should be noted that this process has resulted in a considerable degree of uncertainty associated with the conclusions as the data can only provide an indication of impact, and not an absolute determination of impact. Consequently the findings are limited to prediction of whether potential impact is or is not indicated.

Porgera is continuing to improve its biological monitoring program to provide a more robust data set for biological indicators to support future assessments.

8.1 Fish and Prawns

8.1.1 Upper and Lower River

The results of the impact assessment at upper and lower river test sites are presented in Table 8-1 and Table 8-2 respectively.

The results show that in the upper river, no potential impact was indicated at Wasiba and Wankipe over time compared to the trends observed at reference sites.

In the lower river, potential impact was indicated at Bebelubi in the form of a reduced trend of prawn condition over time compared to the trend observed at reference sites, there was no potential impact indicated at Tiumsinawam.

Table 8-1 Impact assessment – based on the trend of the annual median of biological indicators at upper river test sites relative to the trend of the annual median of biological indicators at upper river reference sites from 2011 - 2015 using Spearman Rank Test.

Site	Indicator	rho	P-Value	Impact assessment
	Fish Abundance	0.300	0.624	No significant change over time
	Fish Richness	0.577	0.308	No significant change over time
	Fish Biomass	0.100	0.624	No significant change over time
Lippor Divor Dof	Fish Condition	0.300	0.624	No significant change over time
Upper River Ref	Prawn Abundance	0.700	0.188	No significant change over time
	Prawn Richness	*	*	No significant change over time
	Prawn Biomass	0.400	0.505	No significant change over time
	Prawn Condition	0.900	0.037	No significant change over time

Site	Indicator	rho	P-Value	Impact assessment
	Fish Abundance	0.500	0.391	No potential impact indicated
	Fish Richness	0.577	0.308	No potential impact indicated
	Fish Biomass	0.900	0.037	No potential impact indicated
 Wasiba	Fish Condition	0.500	0.391	No potential impact indicated
Wasiba	Prawn Abundance	0.900	0.037	No potential impact indicated
	Prawn Richness	*	*	No potential impact indicated
	Prawn Biomass	0.400	0.505	No potential impact indicated
	Prawn Condition	1.000	*	No potential impact indicated
	Fish Abundance	0.300	0.624	No potential impact indicated
	Fish Richness	0.224	0.718	No potential impact indicated
	Fish Biomass	0.500	0.391	No potential impact indicated
Monkino	Fish Condition	0.700	0.188	No potential impact indicated
Wankipe	Prawn Abundance	0.700	0.188	No potential impact indicated
	Prawn Richness	*	*	No potential impact indicated
	Prawn Biomass	0.700	0.188	No potential impact indicated
	Prawn Condition	-0.300	0.624	No potential impact indicated

^{*} Indicates all values within the data set are equal, therefore cannot support the Spearman Rank test but does indicate no significant change over time.

Table 8-2 Impact assessment – based on the trend of the annual median of biological indicators at lower river test sites relative to the trend of the annual median of biological indicators at lower river reference sites from 2011 - 2015 using Spearman Rank Test.

Site	Indicator	rho	P-Value	Impact assessment
	Fish Abundance	0.667	0.219	No significant change over time
	Fish Richness	-0.894	0.041	Significant decrease over time
	Fish Biomass	0.300	0.624	No significant change over time
Lower Diver Def	Fish Condition	0.700	0.188	No significant change over time
Lower River Ref	Prawn Abundance	-0.400	0.505	No significant change over time
	Prawn Richness	*	*	No significant change over time
	Prawn Biomass	-0.400	0.400 0.505 No significant char	
	Prawn Condition	-0.400	0.505	No significant change over time
	Fish Abundance	-0.564	0.322	No potential impact indicated
	Fish Richness	-0.667	0.219	No potential impact indicated
	Fish Biomass	-0.700	0.188	No potential impact indicated
Bebelubi	Fish Condition	0.900	0.037	No potential impact indicated
Depelubi	Prawn Abundance	-0.600	0.285	No potential impact indicated
	Prawn Richness	0.671	0.215	No potential impact indicated
	Prawn Biomass	-0.600	0.285	No potential impact indicated
	Prawn Condition	-0.900	0.037	Potential impact indicated

Site	Indicator	rho	P-Value	Impact assessment
	Fish Abundance	0.300	0.624	No potential impact indicated
	Fish Richness	-0.359	0.553	No potential impact indicated
	Fish Biomass	0.300	0.624	No potential impact indicated
Tiumsinawam	Fish Condition	0.800	0.104	No potential impact indicated
Humsmawam	Prawn Abundance	0.200	0.747	No potential impact indicated
	Prawn Richness	0.671	0.215	No potential impact indicated
	Prawn Biomass	-0.200	0.747	No potential impact indicated
	Prawn Condition	0.000	1.000	No potential impact indicated

^{*} Indicates all values within the data set are equal, therefore cannot support the Spearman Rank test but does indicate no significant change over time.

8.1.2 Lake Murray

The results of impact assessment at Lake Murray are presented in Table 8-3for data recorded from 1993-2009. No potential impact was indicated at either of the test sites as evidenced by no difference in trend between the test and reference site for any of the indicators.

Table 8-3 Impact assessment – based on the trend of the annual median of biological indicators at Lake Murray and ORWB test sites relative to the trend of the annual median of biological indicators at Lake Murray and ORWB reference sites from 1993 - 2009 using Spearman Rank Test.

Site	Indicator	rho	P-Value	Impact assessment
	Fish Abundance	-0.164	0.558	No significant change over time
Lake Murray	Fish Richness	0.087	0.759	No significant change over time
ORWBs Ref	Fish Biomass	0.111	0.694	No significant change over time
	Fish Condition	-0.446	0.095	No significant change over time
	Fish Abundance	0.441	0.058	No potential impact indicated
Central Lake	Fish Richness	0.534	0.018	No potential impact indicated
Central Lake	Fish Biomass	0.358	0.132	No potential impact indicated
	Fish Condition	0.425	0.070	No potential impact indicated
	Fish Abundance	0.061	0.789	No potential impact indicated
Southern Lake	Fish Richness	0.263	0.237	No potential impact indicated
Southern Lake	Fish Biomass	-0.037	0.871	No potential impact indicated
	Fish Condition	0.185	0.411	No potential impact indicated

9 DISCUSSION, CONCLUSIONS AND OVERALL PERFORMANCE

PJV is a large scale open cut and underground gold mine operating in the PNG Highlands since 1990. The environmental aspects of the operation are managed through the implementation of the PJV Environmental Management System (EMS), which is certified to ISO 14001 and has the objectives of consistently and effectively achieve compliance with legal obligations, mitigate risk and continually improve performance.

The PJV environmental monitoring program provides data upon which the operation can assess the effectiveness of the EMS for achieving the stated objectives. The monitoring program has continually evolved over the years with improvements to scientific knowledge and environmental management practices. The 2015 Annual Environment Report continues this tradition by incorporating historical and newly acquired data, information and knowledge within the AER framework.

The purpose of the framework is to assess compliance, risk, impact and performance of the operations environmental aspects. The assessment is based on the comparison of environmental indicators at discharge points within the mine site and potentially impacted (test) sites within the receiving environment downstream of the mine against: compliance limits dictated by the sites environmental permits; trigger values which act as benchmarks of risk, and historical data to assess trends. Where possible the comparison is supported by statistical analysis to provide added confidence in the results.

The operational and environmental aspects of the mine in 2015 were comparable in most respects to previous years, with the exception of a significant increase in the volume of erodible waste rock that was disposed to Anjolek erodible dump, associated with mining Stage 5C at the pit rim.

The site achieved compliance with an average of 97% of the conditions of the environmental permits. Non-compliance related to elevated TSS in discharge from 3 of the 5 sewage treatment plants on at least one occasion throughout the year. The site achieved 100% compliance throughout November and December of 2015 and maintains a target of 100% compliance. Water quality at compliance point SG3 on the Strickland River was compliant with permit requirements throughout 2015.

Background environmental conditions in 2015 were characterised by a strong El Niño event which resulted in the second lowest annual rainfall total at the PJV Anawe plant site since 1974, and subsequently below average flow in the upper and lower rivers. Given that inputs from the mine are relatively consistent from year to year, particularly in recent history, the behavior of mine inputs throughout the receiving environment is largely dictated by flow rates of rivers within the receiving environment. Lower flows result in lower rates of dilution of mine inputs within the receiving environment.

Baseline water quality in the upper, lower rivers and Lake Murray indicates naturally elevated background concentrations of some physical and chemical toxicants were present downstream of the mine prior to the PJV commencing operations. Water quality data from reference sites show low concentrations of metals are being contributed from catchments that are not influenced by the PJV mine within the upper and lower rivers and northern Lake Murray.

Similar to water, baseline benthic sediment quality in the upper, lower rivers and Lake Murray indicates naturally elevated background concentrations of some metals were present downstream of the mine prior to the PJV commencing operations. Sediment quality data from reference sites show nickel in benthic sediment is being contributed to the system from the upper river reference sites and low concentrations of all other metals are being contributed from catchments not influenced by the PJV mine within the upper and lower rivers and northern Lake Murray.

Baseline and reference tissue metal concentrations reflect baseline and reference concentrations in water and sediment, whereby baseline and reference fish tissue and prawn abdomen in the upper and lower rivers exhibit detectable concentrations of some metals.

Risk assessment is performed by developing trigger values for physical and chemical parameters in water, benthic sediment, tissue metal and air using baseline, reference and guideline values which act as a benchmark for assessing concentrations in discharge and/or at test sites potentially influenced by mine discharge. Where an indicator at a discharge or a test site is greater than or equal to the TV, it indicates a potential risk to aquatic ecosystems and triggers further investigation to determine whether impact is occurring.

The results of the risk assessment show that the low rainfall and subsequent low river flows that were experienced in 2015 due to the strong El Niño event, have decreased the moderating influence river flows on the operation's environmental aspects within the receiving environment.

Low rainfall resulted in insufficient water supply from Waile Creek Dam and the ore processing plant was shut down for a number of days in 2015. Baseflow into the dam maintained a seep at the toe of the dam wall that releases approximately 100l/s to the downstream environment. Downstream of the water extraction point at Kogai Creek, flow was maintained throughout the year, albeit at a reduced rate at times due to low rainfall periods. Water extraction for the mine supply is considered to present low environmental risk because environmental flows were maintained in Waile and Kogai creeks.

Inputs from the mine in 2015 were consistent with recent years, with the exception of a slight reduction in sediment load from the erodible dumps to the river system, due to lower rainfall. Consistent input from the mine and lower flows in the receiving environment resulted in lower dilution rates with water and sediment from natural inputs. This is evidenced by higher TSS concentrations at SG1 compared to previous years and an increase in the proportion of mine derived TSS at SG3.

Within the receiving environment however, the increased proportion of mine derived TSS did not result in increased risk due to the physical effects of TSS. TSS concentrations at SG1 and Avu were above their respective TVs and therefore indicated potential risk at those locations. SG1 is 8km downstream of the mine and at the very upper extent of the receiving environment. The exceedance at Avu is not considered to represent significant risk, given the low suitability of the Lake Murray and ORWBs TV. Therefore, these exceedances are not considered representative of system-wide risk, and so overall the physical risk posed by TSS concentrations in water is considered low. However, the behavior of sediment and particulate metals within the receiving environment is an important consideration when assessing chemical risks.

Metals discharged from the minesite can be categorized into the five forms outlined in Table 9-1, with each form behaving differently within the receiving environment depending on its physical and chemical properties. Table 9-1 provides a description of the physical and chemical behavior of each form in the receiving environment.

Table 9-1 Forms of metals in mine discharges and their behavior within the receiving environment

Metal form in discharge	Behaviour in receiving environment
Dissolved in water	Becomes diluted or bonded to particulate matter via adsorption, and depending on particle size and bond strength will contribute to one of the particulate forms.
	Bioavailable to aquatic organisms exposed to elevated dissolved concentrations of metals in the water column and in sediment pore water.

Metal form in discharge	Behaviour in receiving environment				
Mineralised particulate - strongly bound in coarse	Settle as benthic sediment in the upper river sections of the receiving environment.				
fraction (>63μm)	Low bioavailability to aquatic organisms.				
	Low risk of re-mobilisation within the receiving environment due to alkaline conditions.				
Mineralised particulate - strongly bound in fine fraction (<63µm)	Remain suspended within the water column throughout the upper river. A proportion will settle in the lower river, Lake Murray and ORWBs where flow velocities reduce, a proportion will remain suspended.				
	Low bioavailability to aquatic organisms.				
	Low risk of re-mobilisation within the receiving environment due to alkaline conditions.				
Particulate - weakly bound/adsorbed to coarse	Settle as benthic sediment in the upper sections of the receiving environment.				
fraction (>63μm)	Potentially bioavailable to aquatic organisms exposed to benthic sediment at discharge points and within the upper river.				
	Low risk of re-mobilisation within the receiving environment due to alkaline conditions.				
Particulate - weakly bound/adsorbed to fine fraction (<63µm)	Remain suspended within the water column throughout the upper river. A proportion will settle in the lower river, Lake Murray and ORWBs where flow velocities reduce, a proportion will remain suspended.				
	Potentially bioavailable to aquatic organisms exposed to suspended sediment in the water column throughout the entire receiving environment and to benthic sediment in the lower river, Lake Murray and ORWBs.				
	Low risk of re-mobilisation within the receiving environment due to alkaline conditions				

Concentrations of dissolved cadmium, copper, nickel and zinc are elevated in tailings, and concentrations of dissolved cadmium and zinc are elevated in discharge from Kogai and Anawe North competent waste rock dumps. Within the receiving environment the only elevated concentrations that are considered to pose potential risk are dissolved cadmium and zinc observed at SG1, 8km downstream of the mine. Downstream of SG1 the concentrations of dissolved metals pose low risk. This pattern suggests that concentrations of dissolved metals discharged from the site are reduced upon entering the receiving environment as a result of combination of dilution and adsorption to particulate matter.

There are two sources of mine-derived particulate metals within the receiving environment: particulate metals discharged from the site and particulate metals that are formed within the receiving environment from dissolved metals discharged from the site. The behavior of particulate metals within

the receiving environment is dictated to a large degree by particle size, which will determine whether the particle will settle or remain in suspension. The strength of the bond formed between the metal and the particle, will determine whether the metal is weak acid extractable (WAE) or strongly bound and extractable only by strong acid digest (TD). The risk assessment focussed on WAE metals as these are the bioavailable fraction and therefore present a potential risk to the receiving environment.

The risk assessment concluded that potential risk was posed by: tailings sediment containing elevated WAE arsenic, cadmium, copper, lead, and zinc; sediment discharged from Kogai and Anawe North competent dumps containing elevated WAE lead and zinc; and sediment discharged from a number of other locations containing elevated WAE lead and zinc.

Within the receiving environment, WAE nickel in benthic sediment posed a risk at SG5, central and southern Lake Murray, SG6 and Avu, which are the furthest monitoring points downstream of the mine. WAE nickel concentrations in benthic sediment increased with increasing distance from the mine, which also was observed for WAE chromium, although WAE chromium concentrations did not pose a risk to the receiving environment. Given that the concentrations of WAE nickel in sediment discharged from the mine are relatively low, this trend suggests several possible explanations: that WAE nickel is enriched primarily in the fine fraction of tailings sediment; that nickel enrichment of the fine fraction of natural sediments is potentially occurring due to dissolved nickel adsorbing to fine, suspended sediment within the receiving water column; there is a natural source of nickel enriched fine sediment that has not been identified by the PJV monitoring program, and the fine sediment remains in suspension until reaching the lower sections of the river system, Lake Murray and ORWBs, where it settles and contributes to benthic sediment.

The risk assessment also showed that WAE lead in benthic sediment posed a risk to the receiving environment in the upper river at SG1, SG2, Wasiba and Wankipe, and in the ORWB Avu. WAE lead concentrations in sediment decreased from SG1 downstream to SG3 and then increased at SG5, SG6 and Avu. A similar pattern was observed for WAE arsenic, WAE cadmium, WAE copper and WAE zinc although WAE lead was the only metal to pose a risk. The concentration gradient suggests that lead is associated with both the coarse and fine fractions, with the coarse fraction settling in the upper river and the fine fraction remaining in suspension until reaching the lower sections of the river system, Lake Murray and ORWBs, where it settles as benthic sediment.

Concentrations of metals in fish tissue were low throughout the upper and lower rivers exhibiting low risk. Concentrations of metals in prawn abdomen indicated risk in the upper river at Wasiba and Wankipe, and in the lower river at Bebelubi and Tiumsinawam. However in most cases the metal concentrations in prawn tissue were not significantly different from the TV, so although potential risk is indicated, overall the aquatic ecosystem risk as a result of metals accumulation in prawn abdomen is considered low.

In addition to risks posed to the receiving environment, the operations environmental aspects also have the potential to cause risk to human health through exposure to physical and chemical stressors and toxicants. The risk assessment focused on exposure through consumption of water from known drinking water sources within the villages on the SML and LMPs, through contact and incidental consumption of water within the receiving environment where people are known to enter the water for gold panning, fishing or recreational purposes, and through the consumption of fish and prawns within the receiving environment.

Risk assessment showed that the discharges from the mine do not pose a risk to drinking water sources for villages within the SML and LMPs. Risk is posed to people through dermal contact with undiluted tailings as a result of low pH and elevated concentrations of dissolved cadmium, iron, nickel and zinc. Fish and prawns at Wasiba and Wankipe in the upper river, and Bebelubi and Tiumsinawam in the lower river are fit for human consumption.

Additionally, localised risks to air quality are posed by elevated concentrations of oxides of nitrogen from the Anawe Generator and elevated particulate matter in discharge from the lime kilns.

A summary of potential environmental risks and associated environmental aspects is presented in Table 9-2.

Table 9-2 Summary of potential environmental risks

Risk Category	Risk Rating	Associated Environmental Aspect		
Hydrology and environmental flows	Low risk	NA		
Sediment aggradation and erosion	Low risk	NA		
Aquatic ecosystems	Potential risk – within receiving aquatic environment.	Tailings discharge: - Elevated dissolved nickel in slurry - Elevated WAE lead in solids Contact runoff: - Elevated WAE lead in sediment from 28 level, SDA Toe, Kogai Dump Toe, Wendoko Crk D/S Anawe Nth Dump, Yakatabari D/S 28 level and Yarik Portal.		
Local water supplies	Low risk			
Water-based activities	Potential risk – limited to undiluted tailings at discharge point within SML and LMPs.	Tailings discharge: - Low pH - Elevated dissolved cadmium, iron, nickel and zinc.		
Fish and prawn consumption	Low risk			
Air quality	Potential risk – limited to within SML and LMPs.	Power generation Anawe: - Elevated NO _x emissions from Anawe generator. Lime production: - Elevated particulate matter emissions from lime kiln.		

Impact assessment is performed based on biological indicators of aquatic ecosystem health at reference sites to confirm whether risks are resulting in actual impact to aquatic ecosystems. Potential impact is indicated where the trend of a biological indicator at a test site is declining relative to the trend at a reference site. Within the upper rivers, biological indicators show that potential impact is not occurring. In the lower rivers potential impact is indicated by a reduction in prawn condition at Bebelubi

relative to the lower river reference sites, all other indicators show no potential impact. Biological monitoring in Lake Murray has not occurred since 2009 due to a lack of community support, data collected between 1993 and 2009 indicates no potential impact in Lake Murray.

Overall, the environmental performance of the operation in 2015 has been consistent with recent years. The site achieved a high level of compliance with legal obligations and the scope and magnitude of environmental aspects were consistent with recent years. An increase in risk to the receiving environment was noted in 2015, driven by consistent inputs from the mine coupled with reduced river flows and natural sediment inputs throughout the upper and lower rivers system resulting from the strong El Niño event which occurred throughout 2015. However, the condition of the receiving environment remains consistent with predictions made prior to operations commencing in 1990.

10 RECOMMENDATIONS

Recommendations are proposed to improve the certainty of the findings of future reports; the assessment methodology; environmental performance; communication of the findings to the many stakeholders, and to reduce environmental risk and impact.

Note that a number of the recommendations from the 2014 AER are still in progress and appear in the list below in addition to new recommendations raised from this year's AER.

Findings and Assessment Methodology

- Continue to investigate options for increasing the frequency of TSS sampling in lower river, Lake Murray and ORWB reference and test sites;
- Continue to investigate potential bioaccumulation pathways for contaminants of concern within the receiving environment;
- 3. Continue to improve the methods for sampling fish and prawn populations to improve catch rates, reduce within-site variability, therefore improving consistency and increasing statistical power;
- 4. Continue to conduct an annual macroinvertebrate survey to establish a robust data set, with the aim of incorporating macroinvertebrates as an additional indicator of impact into future annual environment reports;
- 5. Continue to revise the QA/QC procedures associated with tissue metal sampling;

Reduce Environmental Risk and Impact and Improve Performance

- 6. Continue to investigate options for reducing the bioavailability of metals within the receiving environment;
- 7. Continue to implement the Waste Rock Management Plan to minimise the release of metalliferous drainage from the competent waste rock dumps.

Communication and Engagement

8. Continue to develop and apply a communication plan to the AER each year, including a presentation to the PNG Conservation and Environmental Protection Authority and a Report Card on the river system.

11 REFERENCES

ANFA (2001), Australia New Zealand Food Authority – Generally Expected Levels (GELs) for Metal Contaminants.

Angel BM, Apte SC, Simpson SL, Jarolimek CV, King J.J, Jung RJ. (2015). A survey of metal concentrations in the Strickland River and tributaries, Papua New Guinea, Minerals Resources Flagship Report. CSIRO, Australia.

ANZECC/ARMCANZ (2000), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and the Agricultural and Resource management Council of Australia and New Zealand, Canberra, ACT, Australia.,

ANZFS (2016), Australia New Zealand Food Standards Code – Standard 1.4.1 – Contaminants and natural toxicants.

Apte, S.C. (1995) Factors affecting the release of metals from discharged mine tailings in the Porgera/Strickland River system. CSIRO Investigation Report CETLH/IR394 prepared for the Porgera Joint Venture.

Batley GE and Simpson SL (2008). *Advancing Australia's Sediment Quality Guidelines*. Australasian Journal of Ecotoxicology, 14, 11-20.

Cresswell T, Smith REW, Nugegoda D and Simpson S. (2010a) *Trace Metal Concentrations and Partitioning in the Highly Turbid Porgera and Lagaip Rivers, Papua New Guinea.* 2013. ASE Workshop, Ecosystem Risk Assessment in PNG. Madang, 14-15th June: Poster Presentation.

Cresswell T, Smith REW, Nugegoda D and Simpson S. (2010b). Trace metal partitioning in the highly turbid Lagaip and Strickland Rivers, PNG. 18th Annual RACI Environmental and Analytical Division R & D Topics Conference. Hobart, 5-8th December: Platform Presentation.

CSIRO (1996). Porgera Joint Venture Review of Riverine Impacts. CSIRO Environmental Projects Office.

Davies M, Parker G and Savigny W (2002). *Porgera Mine Erodible Dumps Panel Review Final Report*. AMEC.

EC (2006), Commission of the European Communities, Commission Regulation (EC) No 1881/2006 of 19 December 2006, setting maximum levels for certain contaminants in foodstuffs.

Fukuda Y and Townsend S. (2006). *Water Quality Objectives for the Darwin Harbour*. Region Aquatic Health Unit, Department of Natural Resources, Environment, the Arts and Sport, Darwin, NT.

HK (1997), Hong Kong Food Adulteration (Metallic Contamination) Regulations.

ISO (2004). International Organisation for Standardisation, AS/NZSISO 14001:2004, Environmental management systems – Requirements with guidance for use.

Long ER, MacDonald DD, Smith SL and Calder ED. (1995). *Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments.* Environment Management 19, 81-97.

NSW (2010), NSW Protection of the Environment Operations (Clean Air) Regulation 2010.

PNG (1984), PNG Public Health (Drinking Water) Regulation 1984. Schedule 1 Standards for Raw Water.

Storey A W, Andersen LE, Lynas J, and Melville F. (2007). Port Curtis Ecosystem Health Report Card. Port Curtis Integrated Monitoring Program, Centre for Environmental Management, Central Queensland University.

Tom Cresswell, Ross E.W. Smith, Dayanthi Nugegoda, and Stuart L. Simpson. Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability. Environmental Science and Pollution Research, DOI 10.1007/s11356-013-2066-2, August 2013.

USEPA (2015). United States Environmental Protection Agency (US EPA). (2015). *External Peer Review Draft Aquatic Life Ambient Water Quality Criterion for Selenium – Freshwater.* USEPA Office of Water, Office of Science and Technology, Washington D.C.

VIC (2001), Victoria State Environment Protection Policy (Air Quality Management) 2001.

WRM (2015). Barrick Porgera Gold Mine: Aquatic Macroinvertebrates as Indicators of Environmental Impact; Scoping Study. Unpublished report to Barrick (Niugini) Limited, Papua New Guinea, by Wetland Research & Management. 28 May 2015.

APPENDIX A. BOX PLOTS EXPLAINED

In a box plot, shown in Figure A-1, the centre horizontal line within the box marks the median value of the sample. The length of the box shows the range within which the central 50% of the values fall, with the box edges (called hinges) at the first and third quartiles (Q1 and Q3).

To describe the information contained in a box plot, a few terms must first be defined. **H-spread** is the inter-quartile range or mid-range (Q3-Q1). **Fences** define outside and far outside values and are defined as follows:

Lower inner fence = Q1 - (1.5 x H-spread)

Upper inner fence = Q3 + (1.5 x H-spread)

Lower outer fence = Q1 - (3 x H-spread)

Upper outer fence = Q3 + (3 x H-spread)

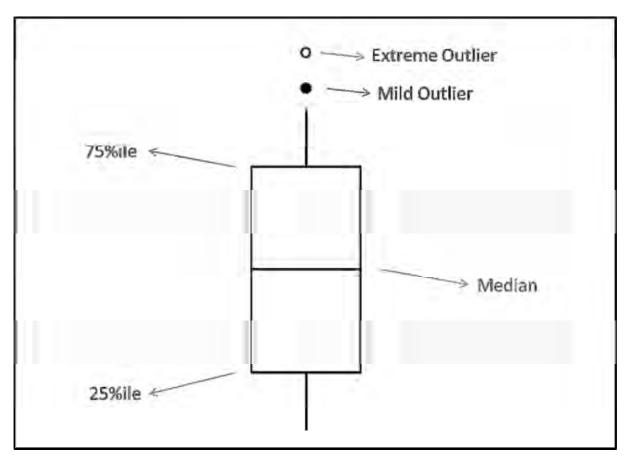


Figure A-1 Box Plot

The whiskers show the range of observed values that fall within the inner fences. In other words, they show the range of values that fall within 1.5 H-spreads of the hinges. Because the whiskers extend to observed values and the fences need not correspond to observed values, the whiskers do not necessarily extend all the way to the inner fences. Values between the inner and outer fences (mild outliers) are plotted with asterisks. Values beyond the outer fences, called extreme outliers, are plotted with empty circles.

APPENDIX B. QA/QC

Collection of environmental monitoring data is performed by the PJV Environment Department. The team consists of 19 staff and includes trained environmental scientists, chemists, engineers, biologists, hydrologists and technicians.

Water samples are analysed for alkalinity, pH, conductivity, total suspended solids, sulfate, chloride, WAD-CN, total hydrocarbons and coliforms by PJV staff at the onsite environmental chemistry laboratory. All other analysis of water, sediment and fish and prawn tissue in 2015 was performed by the National Measurement Institute (NMI) in Sydney Australia. NMI is a NATA-accredited laboratory.

Quality assurance and quality control (QA/QC) measures for water, sediment and tissue metals are performed to ensure the results of the monitoring program are accurate, representative and defendable. The QA/QC measures associated with the Porgera Environmental Monitoring and Reporting program are discussed in the following sections.

Training & Competency

The training and competency system is aimed at achieving consistent application of techniques for sampling, analysis, data management and reporting that are consistent with industry best practice.

Each task associated with the monitoring and reporting program is outlined in a Standard Operating Procedure (SOP). Each staff member is then trained to conduct the task in accordance with the SOP, and then assessed to confirm competence.

QA/QC Sampling and Laboratory Results

The sampling schedule includes the collection of QA/QC samples for the purpose of validating that the monitoring results are accurate and representative. The QA/QC samples, their purpose, collection frequency and performance criteria are shown in Table B-1.

Upon receiving the results from the laboratory, the results are screened to ensure the QA/QC results are within acceptable limits prior to being transferred to the database.

Water and Sediment

The QA/QC samples for water and sediment, their purpose, collection frequency and performance criteria are shown in Table B-1.

Table B-1 QA/QC Samples – Water and Sediment Quality

QA/QC Sample	Purpose	Sample rate	Acceptance Criteria
Combined field, method and transport blank (water only)	Test for contamination during field work, sample preparation and transport. Test for accuracy of laboratory analytical method.	1 blank per sample batch	≤ LOR for each analyte
Field duplicate	Test repeatability of laboratory analytical method.	1 duplicate for every 8 samples (minimum 1 per batch)	± 44% of primary sample
NMI lab duplicate	Test repeatability of laboratory analytical method.	1 blank per sample batch	± 44% of primary sample
NMI lab control sample	Test influence of sample preparation and analysis on recovery.	1 blank per sample batch	75% – 120% recovery
NMI matrix spike	Test influence of sample preparation and analysis on recovery.	1 blank per sample batch	75% – 120% recovery

The results of QA/QC samples from water quality sampling at SG3 in 2015 are shown in Table B-2 and indicate good performance for the majority of QA/QC samples across the majority of parameters. The exception is the performance of the combined blank for dissolved zinc, where 18% of results exceeded the LOR. This indicates that zinc contamination of the blank occurred during the sample collection, transport and analysis process. It should be noted that the highest concentration recorded was four-times the LOR and is considered extremely low. However, SOPs and training are being revised to ensure the risk of contamination is minimised.

Table B-2 2015 Water quality QA/QC sample results SG3

		% Within Acceptable Criteria										
Sample Type	Ag- D	As- D	Cd- D	Cr- D	Cu- D	Hg- D	Ni- D	Pb- D	Se- D	Zn- D	рН	WAD- CN
Combined Blank	100	100	100	100	100	96	100	92	100	82	96	100
CRM	100	100	100	100	100	100	100	100	100	100	100	100
Field Duplicate	100	100	100	100	100	100	100	100	100	100	92	100
NMI Duplicate	100	100	100	100	100	100	100	100	100	100	100	100
NMI Lab Control Sample	100	100	100	100	100	100	100	100	100	100	100	100
NMI Matrix Spike	100	100	100	100	100	92	100	100	100	100	100	100

D = Dissolved fraction

The results of QA/QC samples from sediment quality sampling at SG3 in 2015 are shown in Table B-3 and indicate good performance of all samples for all parameters with the exception of field duplicates for copper and lead. The cause of poor performance of copper and lead duplicates is not known, however the review of SOPs and increased focus on training and competency is expected in improve the QA/QC performance and will facilitate a more timely investigation of non-compliant QA/QC results.

Table B-3 2015 Sediment quality QA/QC sample results SG3

		% Within Acceptable Criteria										
Sample Type	Ag - WAE	As - WAE	Cd - WAE	Cr - WAE	Cu - WAE	Hg - WAE	Ni - WAE	Pb - WAE	Se - WAE	Zn - WAE		
Field Duplicate	97	90	93	90	87	90	90	77	100	90		
NMI Duplicate	100	100	100	100	100	100	100	100	100	100		
NMI Matrix Spike	100	100	100	100	100	100	100	100	100	100		

WAE = Weak Acid Extractable

In addition to the routine QA/QC samples, PJV also participated in six proficiency test rounds in 2015 run by Proficiency Testing Australia. The inter-laboratory testing programs provide an independent assessment of the analytical methods used within the PJV Environmental Chemistry Laboratory.

The proficiency testing results are summarised in Table B-4. The results showed good performance across most analysis, with the exception of oil and grease, pH and TSS.

Table B-4 Proficiency testing results 2015

Date	Analyte	Lab result	MU	Median	NORM IQR	CV (%)	n	z-score
March	0:1.0.0	30.1	0.3	71.7	7.41	10.3	41	-5.61
2015	Oil & Grease	22.8	0.3	44.0	5.00	11.4	39	-4.24
	Alkalinity	62.9	24	50.80	4.34	8.5	47	2.79
	Chloride	103	9.4	94.8	2.48	2.6	47	3.3
April 2015	Conductivity	516	32	507	10.4	2.0	57	0.87
April 2015	Sulphate	32	2.6	32.5	1.52	4.7	47	-0.33
	Total Dissolved Solids	333	4.9	328.5	19.1	5.8	42	0.24
	Total Solids	361	90	334	22.2	6.7	38	1.21
	Sulphate	13.7	5.0	13.3	0.52	3.9	49	0.77
	Conductivity	292.8	5.0	294.0	7.8	2.6	63	-0.15
July 2015	pH – potable	6.11	0.5	6.69	0.089	1.3	67	-6.52
	pH - standard	7.22	0.2	7.16	0.044	0.6	67	1.35
	Colour	22.5	5	21	3.2	15.4	34	0.46
August	BOD	89.0	25.3	89.9			30	na
2015	COD	124	15	146	9.5	6.5	30	-2.33
	Total Solids	544	40	541	14.1	2.6	33	0.21
August	Total Solids	328	40	358	14.8	4.1	33	-2.02
2015	Total Suspended Solids	48	10	45.5	4.45	9.8	45	0.56
	Total Suspended Solids	73.2	10	97.6	5.93	5.1	45	-4.11
September	WAD-CN	0.080	0.008	0.1060	0.0158	14.9	20	-1.65
2015	WAD-CN	4.50	0.2	5.28	0.445	8.4	20	-1.75

Within acceptable range of results
Outlier – value lies outside acceptable range of results.

MU - Measurement Uncertainty, NORM IQR - Normalized Interquartile Range, CV - Coefficient of Variation, Z - score - statistical measurement of a score's relationship to the mean.

Tissue Metal

The QA/QC samples for tissue metal, their purpose, collection frequency and performance criteria are shown in Table B-5.

Table B-5 QA/QC samples – tissue metals

QA/QC Sample	Purpose	Sample rate	Acceptance Criteria
Field reference sample (Fish flesh of known concentration)	Test for contamination during field work, sample preparation and transport. Test for accuracy of laboratory analytical method.	1 blank per sample batch (as per sampling monitoring schedule)	± 44% of known concentration.
Field duplicate	Test repeatability of laboratory analytical method.	1 duplicate for every 8 samples (minimum 1 per batch)	± 44% of primary sample
NMI blank	Test for contamination during sample analysis. Test for accuracy of laboratory analytical method.	1 blank per sample batch	≤ LOR for each analyte
NMI duplicate	Test repeatability of laboratory analytical method.	Minimum 1 blank per sample batch	± 44% of primary sample
NMI lab control sample	Test influence of sample preparation and analysis on recovery.	Minimum 1 blank per sample batch	75% – 120% recovery
NMI matrix spike	Test influence of sample preparation and analysis on recovery.	Minimum 1 blank per sample batch	75% – 120% recovery

The results of QA/QC samples from tissue metal sampling in 2015 are shown in Table B-6 and indicate good performance for the majority of QA/QC samples across the majority of parameters. The exceptions are the performance of arsenic, chromium copper, nickel and zinc in the field reference sample. The exact cause of the poor results is not known, however an increased focus of compliance to SOPs and training and competency is expected to improve accuracy and will facilitate a more timely investigation of non-compliant QA/QC results.

Table B-6 2015 Tissue metal QA/QC sample results

		% Within Acceptable Criteria								
	n	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
Field Duplicate	16	88	88	81	88	100	69	100	100	100
Field Reference Sample	43	68	100	42	86	95	74	100	100	86
NMI Blank	10	100	100	100	100	100	100	100	100	100
NMI Duplicate	10	100	100	100	100	100	100	100	100	100
NMI Lab Control Sample	10	100	100	100	100	100	100	100	100	100
NMI Matrix Spike	10	100	100	100	100	100	100	100	100	100

Internal Quality Audits

Internal audits are performed at six-monthly intervals to assess the department's compliance with the Porgera Monitoring Auditing and Reporting Plan and associated SOPs. The findings of the audits are captured in a corrective action log.

The monitoring and reporting program is also subject to ISO 14001 external audits, International Cyanide Management Code external audits and Barrick Corporate external audits.

Discussion

The QA/QC program is designed to provide accurate, representative and defendable results. It includes a training and competency program to ensure the correct procedures are defined and complied with, and it includes a sampling program to provide evidence to validate that the results are accurate and representative.

The results show that overall the QA/QC program provides a good level of confidence that the results as reported are accurate and representative. A number of opportunities for improvement have been identified, and the review of SOPs, training and competency and timely investigation of poor QA/QC performance will be ongoing throughout 2016.

APPENDIX C. BOX PLOTS AND TRENDS OF MINE AREA RUNOFF WATER QUALITY 1994 – 2015

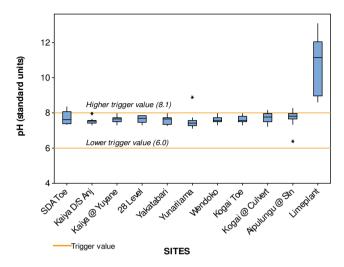


Figure C-1 pH in mine contact runoff 2015

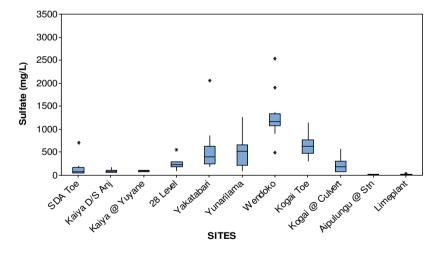


Figure C-3 Sulfate in mine contact runoff 2015

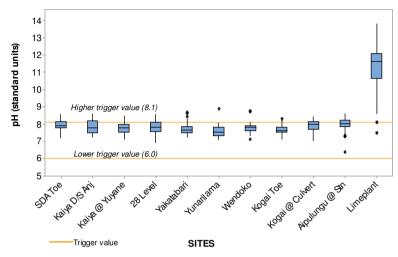


Figure C-2 pH in mine contact runoff 2011 - 2015

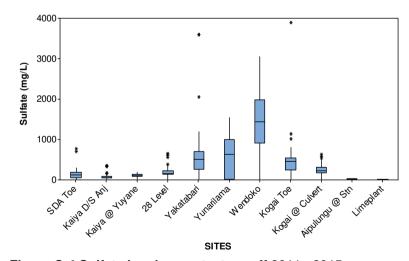


Figure C-4 Sulfate in mine contact runoff 2011 - 2015

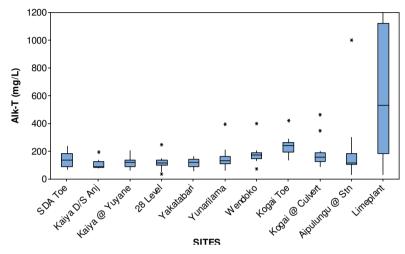


Figure C-5 Alkalinity of contact runoff 2015

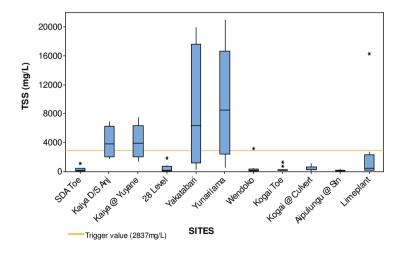


Figure C-7 TSS in contact runoff 2015

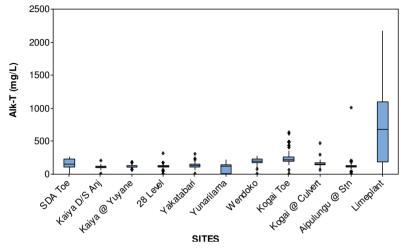


Figure C-6 Alkalinity of contact runoff 2011 - 2015

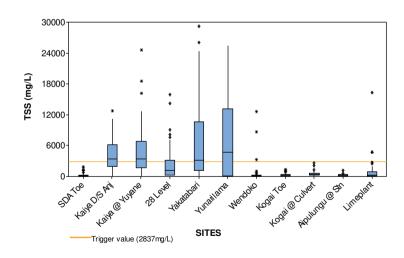


Figure C-8 TSS in contact runoff 2011 - 2015

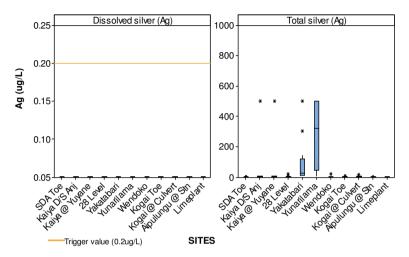


Figure C-9 Dissolved and total silver in contact runoff 2015

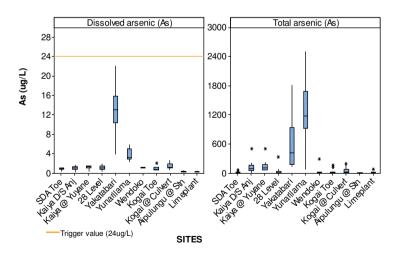


Figure C-11 Dissolved and total arsenic in contact runoff 2015

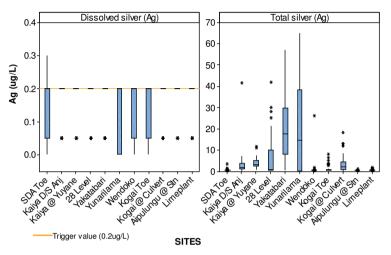


Figure C-10 Dissolved and total silver in contact runoff 2011 - 2015

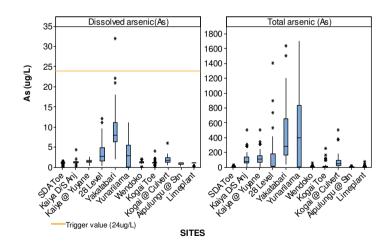


Figure C-12 Dissolved and total arsenic in contact runoff 2011 - 2015

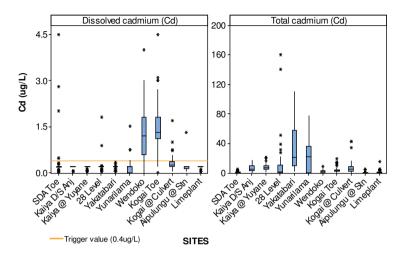


Figure C-13 Dissolved and total cadmium in contact runoff 2015

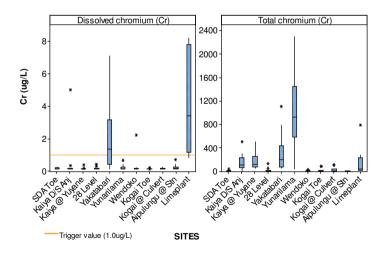


Figure C-15 Dissolved and total chromium in contact runoff 2015

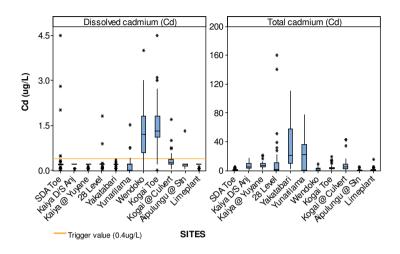


Figure C-14 Dissolved and total cadmium contact runoff 2011 - 2015

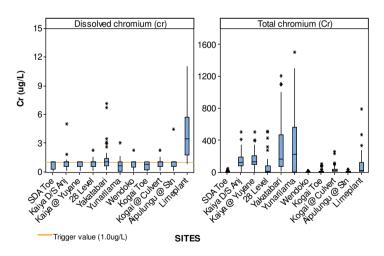


Figure C-16 Dissolved and total chromium in contact runoff 2011 - 2015

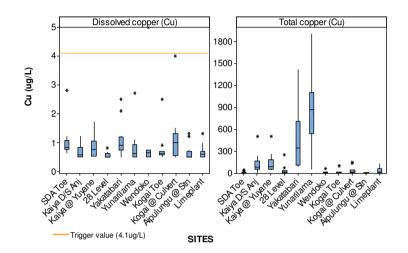


Figure C-17 Dissolved and total copper in contact runoff 2015

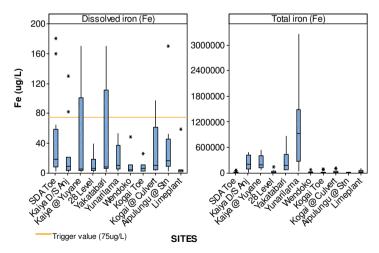


Figure C-19 Dissolved and total iron in contact runoff 2015

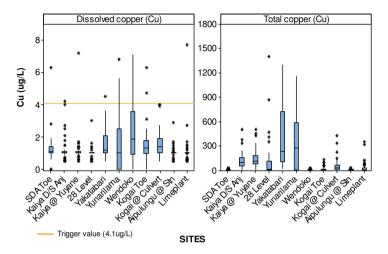


Figure C-18 Dissolved and total copper contact runoff 2011 - 2015

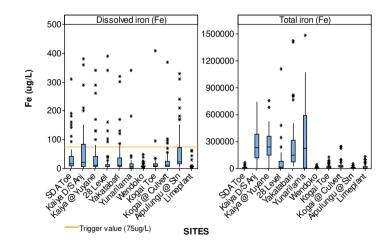


Figure C-20 Dissolved and total iron in contact runoff 2011 - 2015

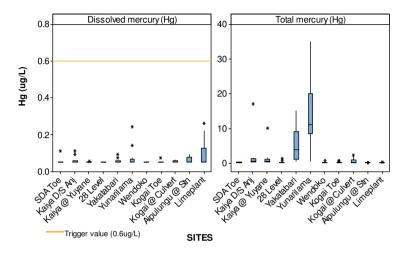


Figure C-21 Dissolved and total mercury in contact runoff 2015

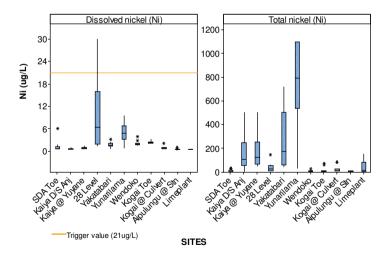


Figure C-23 Dissolved and total nickel in contact runoff 2015

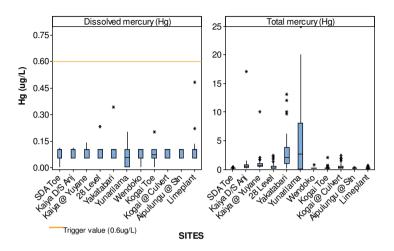


Figure C-22 Dissolved and total mercury in contact runoff 2011 - 2015

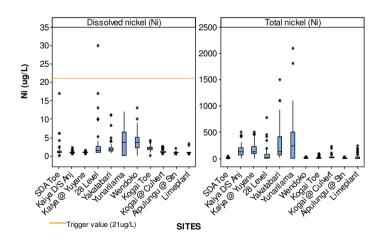


Figure C-23 Dissolved and total nickel in contact runoff 2011 - 2015

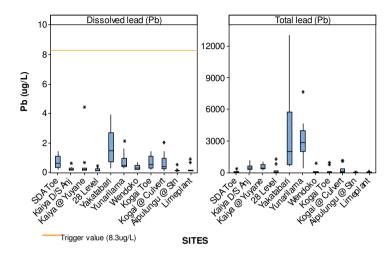


Figure C-24 Dissolved and total lead in contact runoff 2015

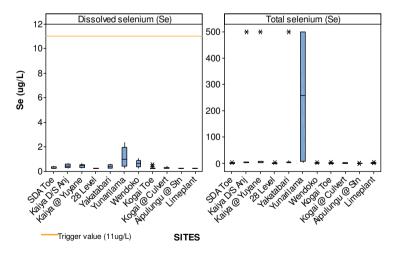


Figure C-25 Dissolved and total selenium in contact runoff 2015

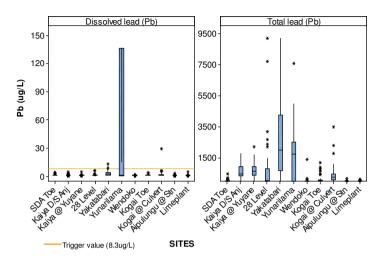


Figure C-25 Dissolved and total lead contact runoff 2011 - 2015

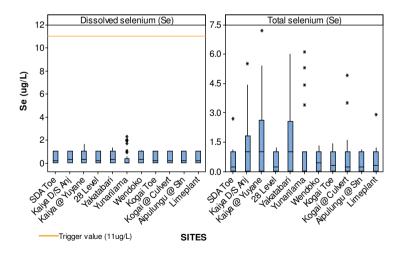


Figure C-26 Dissolved and total selenium in contact runoff 2011 - 2015

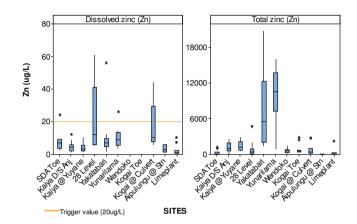


Figure C-27 Dissolved and total zinc in contact runoff 2015

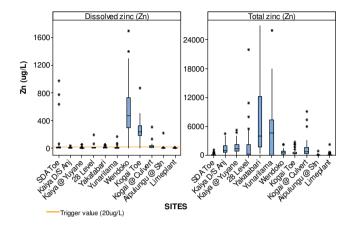


Figure C-28 Dissolved and total zinc in contact runoff 2011 - 2015

Table C-1 SDA Toe 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
pН	-0.574	<0.001	Decrease
Sulfate	-0.495	<0.001	Decrease
ALK-T	-0.218	0.117	Decrease
TSS	0.267	0.053	Increase
Ag-D*	-0.726	<0.001	No change
Ag-T*	-0.253	0.068	No change
As-D*	-0.481	<0.001	No change
As-T	0.061	0.665	No change
Cd-D*	-0.659	<0.001	No change
Cd-T	-0.144	0.416	No change
Cr-D*	-0.984	<0.001	No change
Cr-T	-0.056	0.693	No change
Cu-D*	-0.465	<0.001	No change
Cu-T	-0.017	0.904	No change
Fe-D	0.097	0.491	No change
Fe-T	0.039	0.781	No change
Hg-D*	-0.742	<0.001	No change
Hg-T*	-0.419	0.002	No change
Ni-D*	-0.436	0.001	No change
Ni-T	0.026	0.856	No change
Pb-D*	-0.367	0.007	No change
Pb-T	-0.054	0.699	No change
Se-D*	-0.822	<0.001	No change
Se-T*	-0.700	<0.001	No change
Zn-D	-0.334	0.016	Decrease
Zn-T	-0.002	0.989	No change

LOR = Analytical Limit of Reporting

Table C-2 Kaiya D/S Anjolek 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.730	<0.001	Decrease
Sulfate	0.162	0.267	No change
ALK-T	0.026	0.858	No change
TSS	-0.327	0.020	Decrease
Ag-D*	-0.775	< 0.001	No change
Ag-T	-0.156	0.268	No change
As-D*	-0.118	0.404	No change
As-T	-0.321	0.020	Decrease
Cd-D*	-0.760	<0.001	No change
Cd-T	-0.321	0.020	Decrease
Cr-D*	-0.750	<0.001	No change
Cr-T	-0.324	0.019	Decrease
Cu-D*	-0.628	< 0.001	No change
Cu-T	-0.393	0.004	Decrease
Fe-D	-0.259	0.064	No change
Fe-T	-0.456	0.001	Decrease
Hg-D*	-0.733	< 0.001	No change
Hg-T*	0.039	0.784	No change
Ni-D*	-0.629	< 0.001	No change
Ni-T	-0.347	0.012	Decrease
Pb-D*	-0.618	<0.001	No change
Pb-T	-0.462	0.001	Decrease
Se-D*	-0.823	<0.001	No change
Se-T	0.105	0.583	No change
Zn-D	0.057	0.691	No change
Zn-T	-0.433	0.001	Decrease

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-3 Kaiya at Yuyan 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.593	<0.001	Decrease
Sulfate	-0.545	<0.001	Decrease
ALK-T	0.074	0.600	No change
TSS	-0.190	0.182	No change
Ag-D*	-0.753	<0.001	No change
Ag-T	-0.147	0.298	No change
As-D	-0.021	0.885	No change
As-T	-0.097	0.493	No change
Cd-D*	-0.753	<0.001	No change
Cd-T	-0.277	0.047	Decrease
Cr-D*	-0.841	<0.001	No change
Cr-T	-0.180	0.201	No change
Cu-D*	-0.276	0.048	No change
Cu-T	-0.346	0.012	Decrease
Fe-D	-0.163	0.248	No change
Fe-T	-0.376	0.007	Decrease
Hg-D*	-0.844	<0.001	No change
Hg-T	-0.080	0.571	No change
Ni-D*	-0.249	0.076	No change
Ni-T	-0.275	0.048	Decrease
Pb-D*	-0.431	0.001	No change
Pb-T	-0.447	0.001	Decrease
Se-D*	-0.816	<0.001	No change
Se-T	0.080	0.672	No change
Zn-D	0.052	0.716	No change
Zn-T	-0.267	0.056	No change

LOR = Analytical Limit of Reporting

Table C-4 28 Level 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.335	0.012	Decrease
Sulfate	0.244	0.078	No change
ALK-T	-0.058	0.672	No change
TSS	-0.661	<0.001	Decrease
Ag-D*	-0.744	<0.001	No change
Ag-T*	-0.598	<0.001	No change
As-D	-0.826	<0.001	Decrease
As-T	-0.540	<0.001	Decrease
Cd-D	-0.219	0.105	No change
Cd-T	-0.419	0.001	Decrease
Cr-D*	-0.872	<0.001	No change
Cr-T	-0.872	<0.001	Decrease
Cu-D*	-0.675	<0.001	No change
Cu-T	-0.437	0.001	Decrease
Fe-D	-0.134	0.324	No change
Fe-T	-0.447	0.001	Decrease
Hg-D*	-0.847	<0.001	No change
Hg-T*	-0.489	<0.001	No change
Ni-D	0.542	<0.001	Increase
Ni-T	-0.350	0.008	Decrease
Pb-D*	-0.636	<0.001	No change
Pb-T	-0.497	<0.001	Decrease
Se-D*	-0.864	<0.001	No change
Se-T*	-0.655	<0.001	No change
Zn-D	0.251	0.064	No change
Zn-T	-0.421	0.001	Decrease

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-5 Yakatabari 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.370	0.006	Decrease
Sulfate	-0.345	0.012	Decrease
ALK-T	-0.226	0.100	No change
TSS	-0.137	0.324	No change
Ag-D*	-0.749	<0.001	No change
Ag-T	0.040	0.771	No change
As-D	0.382	0.004	Increase
As-T	-0.080	0.563	No change
Cd-D*	-0.589	<0.001	No change
Cd-T	0.020	0.884	No change
Cr-D	0.015	0.911	No change
Cr-T	-0.106	0.443	No change
Cu-D*	-0.392	0.003	No change
Cu-T	-0.047	0.731	No change
Fe-D	-0.003	0.985	No change
Fe-T	-0.184	0.182	No change
Hg-D*	-0.770	<0.001	No change
Hg-T	0.316	0.019	Increase
Ni-D	-0.075	0.586	No change
Ni-T	-0.146	0.289	No change
Pb-D	-0.094	0.494	No change
Pb-T	-0.036	0.794	No change
Se-D*	-0.770	<0.001	No change
Se-T	0.120	0.507	No change
Zn-D	-0.062	0.654	No change
Zn-T	-0.036	0.792	No change

LOR = Analytical Limit of Reporting

Table C-6 Yunarilama 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.498	0.002	Decrease
Sulfate	-0.651	<0.001	Decrease
ALK-T	0.140	0.402	No change
TSS	-0.116	0.487	No change
Ag-D*	-0.852	<0.001	No change
Ag-T	0.678	<0.001	Increase
As-D	-0.223	0.177	No change
As-T	0.558	<0.001	Increase
Cd-D*	-0.369	0.023	No change
Cd-T	0.485	0.002	Increase
Cr-D*	-0.795	<0.001	No change
Cr-T	0.545	<0.001	Increase
Cu-D*	-0.585	<0.001	No change
Cu-T	0.539	<0.001	Increase
Fe-D	-0.118	0.478	No change
Fe-T	0.346	0.036	Increase
Hg-D*	-0.606	<0.001	Increase
Hg-T	0.599	<0.001	Increase
Ni-D	-0.064	0.703	No change
Ni-T	0.527	0.001	Increase
Pb-D*	-0.786	<0.001	No change
Pb-T	0.367	0.024	Increase
Se-D*	-0.185	0.476	No change
Se-T	0.674	0.003	Increase
Zn-D	0.132	0.435	No change
Zn-T	0.449	0.005	Increase

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-7 Wendoko 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.440	0.001	Decrease
Sulfate	-0.219	0.119	No change
ALK-T	-0.550	<0.001	Decrease
TSS	-0.038	0.786	No change
Ag-D*	-0.758	<0.001	No change
Ag-T*	-0.347	0.010	No change
As-D	-0.552	<0.001	Decrease
As-T	-0.097	0.486	No change
Cd-D*	-0.464	<0.001	No change
Cd-T	-0.459	<0.001	Decrease
Cr-D*	-0.796	<0.001	No change
Cr-T*	-0.227	0.099	No change
Cu-D*	-0.607	<0.001	No change
Cu-T	-0.364	0.007	Decrease
Fe-D	-0.072	0.608	No change
Fe-T	-0.107	0.446	No change
Hg-D*	-0.860	<0.001	No change
Hg-T*	-0.475	<0.001	No change
Ni-D	-0.795	<0.001	Decrease
Ni-T	-0.524	<0.001	Decrease
Pb-D*	-0.553	<0.001	No change
Pb-T	-0.106	0.446	No change
Se-D*	-0.780	<0.001	No change
Se-T*	-0.713	<0.001	No change
Zn-D	-0.655	<0.001	Decrease
Zn-T	-0.591	<0.001	Decrease

LOR = Analytical Limit of Reporting

Table C-8 Kogai Toe 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	0.044	0.767	No change
Sulfate	0.257	0.075	No change
ALK-T	-0.192	0.187	No change
TSS	0.048	0.745	No change
Ag-D*	-0.770	<0.001	No change
Ag-T*	-0.292	0.041	No change
As-D*	-0.206	0.155	No change
As-T	0.048	0.742	No change
Cd-D	0.335	0.019	Increase
Cd-T	0.252	0.081	No change
Cr-D*	-0.905	<0.001	No change
Cr-T	-0.015	0.917	No change
Cu-D	-0.435	0.002	No change
Cu-T	-0.056	0.701	No change
Fe-D	-0.210	0.147	No change
Fe-T	0.021	0.888	No change
Hg-D*	-0.835	<0.001	No change
Hg-T*	-0.462	0.001	No change
Ni-D	0.451	0.001	Increase
Ni-T	0.019	0.896	No change
Pb-D	-0.032	0.828	No change
Pb-T	-0.001	0.997	No change
Se-D*	-0.847	<0.001	No change
Se-T*	-0.708	<0.001	No change
Zn-D	0.396	0.005	Increase
Zn-T	0.163	0.264	No change

*The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-9 Kogai at Culvert 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
pН	-0.397	0.002	Decrease
Sulfate	-0.527	<0.001	Decrease
ALK-T	-0.169	0.209	No change
TSS	-0.080	0.556	No change
Ag-D*	-0.770	<0.001	No change
Ag-T	-0.183	0.173	No change
As-D	-0.322	0.014	Decrease
As-T	-0.249	0.061	No change
Cd-D*	-0.456	<0.001	No change
Cd-T	-0.169	0.210	No change
Cr-D*	-0.864	<0.001	No change
Cr-T	-0.107	0.427	No change
Cu-D	-0.343	0.009	Decrease
Cu-T	-0.177	0.187	No change
Fe-D	0.028	0.839	No change
Fe-T	-0.017	0.903	No change
Hg-D*	-0.836	<0.001	No change
Hg-T*	0.005	0.970	No change
Ni-D*	-0.355	0.007	No change
Ni-T	-0.159	0.238	No change
Pb-D*	-0.415	0.001	No change
Pb-T	-0.235	0.079	No change
Se-D*	-0.840	<0.001	No change
Se-T*	-0.506	0.003	No change
Zn-D	-0.328	0.014	Decrease
Zn-T	-0.208	0.121	No change

LOR = Analytical Limit of Reporting

Table C-10 Aipulungu at Station 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.578	<0.001	Decrease
Sulfate	-0.653	<0.001	Decrease
ALK-T	0.176	0.194	No change
TSS	-0.301	0.024	Decrease
Ag-D*	-0.759	<0.001	No change
Ag-T*	-0.740	<0.001	No change
As-D*	-0.710	<0.001	No change
As-T*	-0.385	0.003	No change
Cd-D*	-0.676	<0.001	No change
Cd-T*	-0.709	<0.001	No change
Cr-D*	-0.855	<0.001	No change
Cr-T	-0.282	0.034	Decrease
Cu-D*	-0.456	<0.001	No change
Cu-T	-0.360	0.006	Decrease
Fe-D	-0.213	0.111	No change
Fe-T	-0.320	0.016	Decrease
Hg-D*	-0.803	<0.001	No change
Hg-T*	-0.772	<0.001	No change
Ni-D*	-0.716	<0.001	No change
Ni-T	-0.332	0.012	Decrease
Pb-D*	-0.665	<0.001	No change
Pb-T	-0.285	0.032	Decrease
Se-D*	-0.602	<0.001	No change
Se-T*	-0.597	<0.001	No change
Zn-D	-0.341	0.010	Decrease
Zn-T	-0.317	0.016	Decrease

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-11 Lime plant 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.246	0.070	No change
Sulfate	-0.445	0.001	Decrease
ALK-T	-0.191	0.162	No change
TSS	0.284	0.037	Increase
Ag-D*	-0.774	<0.001	No change
Ag-T	-0.224	0.097	No change
As-D*	-0.722	<0.001	No change
As-T	0.221	0.102	No change
Cd-D*	-0.682	<0.001	No change
Cd-T	0.026	0.848	No change
Cr-D	0.076	0.576	No change
Cr-T	0.342	0.010	Increase
Cu-D*	-0.503	<0.001	No change
Cu-T	0.277	0.039	Increase
Fe-D*	-0.462	<0.001	No change
Fe-T	0.253	0.062	No change
Hg-D*	-0.482	<0.001	No change
Hg-T*	-0.368	0.005	No change
Ni-D*	-0.630	<0.001	No change
Ni-T	0.267	0.046	Increase
Pb-D*	-0.364	0.006	No change
Pb-T	0.290	0.030	Increase
Se-D*	-0.864	<0.001	No change
Se-T*	-0.564	<0.001	No change
Zn-D	-0.137	0.320	No change
Zn-T	0.300	0.024	Increase

LOR = Analytical Limit of Reporting

Table C-12 Aipulungu U/S Lime plant 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.408	0.002	Decrease
Sulfate	-0.623	<0.001	Decrease
ALK-T	0.311	0.021	Increase
TSS	-0.082	0.555	No change
Ag-D*	-0.675	<0.001	No change
Ag-T*	-0.729	<0.001	No change
As-D*	-0.716	<0.001	No change
As-T*	-0.657	<0.001	No change
Cd-D*	-0.699	<0.001	No change
Cd-T*	-0.714	<0.001	No change
Cr-D*	-0.752	<0.001	No change
Cr-T*	-0.447	<0.001	No change
Cu-D*	-0.557	<0.001	No change
Cu-T*	-0.468	<0.001	No change
Fe-D	-0.302	0.022	Decrease
Fe-T	-0.435	0.001	Decrease
Hg-D*	-0.821	<0.001	No change
Hg-T*	-0.638	<0.001	No change
Ni-D*	-0.729	<0.001	No change
Ni-T*	-0.363	0.006	No change
Pb-D*	-0.657	<0.001	No change
Pb-T*	-0.393	0.003	No change
Se-D*	-0.864	<0.001	No change
Se-T*	-0.834	<0.001	No change
Zn-D	-0.152	0.263	Decrease
Zn-T	-0.374	0.004	Decrease

*The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-13 Waile Dam 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.371	0.004	Decrease
Sulfate	-0.822	<0.001	Decrease
ALK-T	0.736	<0.001	Increase
TSS	0.205	0.124	No change
Ag-D*	-0.766	<0.001	No change
Ag-T*	-0.767	<0.001	No change
As-D*	-0.730	<0.001	No change
As-T*	0.710	<0.001	No change
Cd-D*	-0.647	<0.001	No change
Cd-T*	-0.720	<0.001	No change
Cr-D*	-0.870	<0.001	No change
Cr-T*	-0.783	<0.001	No change
Cu-D*	-0.593	<0.001	No change
Cu-T*	-0.497	<0.001	No change
Fe-D	0.011	0.937	No change
Fe-T	-0.444	0.001	Decrease
Hg-D*	-0.724	<0.001	No change
Hg-T*	-0.693	<0.001	No change
Ni-D*	-0.715	<0.001	No change
Ni-T*	-0.555	<0.001	No change
Pb-D*	-0.697	<0.001	No change
Pb-T*	-0.583	<0.001	No change
Se-D*	-0.874	<0.001	No change
Se-T*	-0.830	<0.001	No change
Zn-D	0.256	0.054	Increase
Zn-T	-0.501	<0.001	Decrease

LOR = Analytical Limit of Reporting

Table C-14 Kaiya U/S Anjolek 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.558	<0.001	Decrease
Sulfate	-0.401	0.003	Decrease
ALK-T	0.210	0.128	No change
TSS	-0.260	0.058	No change
Ag-D*	-0.770	<0.001	No change
Ag-T*	-0.645	<0.001	No change
As-D*	-0.582	<0.001	No change
As-T*	-0.498	<0.001	No change
Cd-D*	-0.713	<0.001	No change
Cd-T*	-0.713	<0.001	No change
Cr-D*	-0.886	<0.001	No change
Cr-T*	-0.293	0.030	No change
Cu-D*	-0.638	<0.001	No change
Cu-T*	-0.330	0.014	No change
Fe-D	-0.233	0.087	No change
Fe-T	-0.348	0.010	Decrease
Hg-D*	-0.788	<0.001	No change
Hg-T*	-0.574	<0.001	No change
Ni-D*	-0.758	<0.001	No change
Ni-T	-0.267	0.049	Decrease
Pb-D*	-0.754	<0.001	No change
Pb-T	-0.396	0.003	Decrease
Se-D*	-0.847	<0.001	No change
Se-T*	-0.769	<0.001	No change
Zn-D	-0.026	0.853	No change
Zn-T	-0.300	0.026	Decrease

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-15 Pongema 2011 - 2015 (trend of annual median)

Parameter	Spearman's rho	P-Value (P=0.05)	Trend
рН	-0.596	<0.001	Decrease
Sulfate	-0.589	<0.001	Decrease
ALK-T	0.048	0.716	No change
TSS	0.020	0.879	No change
Ag-D*	-0.751	<0.001	No change
Ag-T*	-0.710	<0.001	No change
As-D*	-0.723	<0.001	No change
As-T*	-0.657	<0.001	No change
Cd-D*	-0.681	<0.001	No change
Cd-T*	-0.751	<0.001	No change
Cr-D*	-0.850	<0.001	No change
Cr-T*	-0.355	0.005	No change
Cu-D*	-0.437	<0.001	No change
Cu-T*	-0.412	0.001	No change
Fe-D	-0.211	0.105	No change
Fe-T	-0.351	0.006	Decrease
Hg-D*	-0.801	<0.001	No change
Hg-T*	-0.580	<0.001	No change
Ni-D*	-0.703	<0.001	No change
Ni-T*	-0.450	<0.001	No change
Pb-D*	-0.704	<0.001	No change
Pb-T*	-0.485	<0.001	No change
Se-D*	-0.874	<0.001	No change
Se-T*	-0.833	<0.001	No change
Zn-D	-0.393	0.002	Decrease
Zn-T	-0.389	0.002	Decrease

^{*}The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table C-16 28 Level 2015 median against upper river TV (μg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Risk Assessment
28 Level	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSMENT
рН	11	11	7.7	LowerTV <tsm<uptv< td=""><td>Step 1/2</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1/2	6.0-8.1	0.002	LOW
TSS	12	12	78	TSM < TV	Step 1	2837	0.001	LOW
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	0.92	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.07	TSM < TV	Step 1	0.4	0.112	POTENTIAL
Cr-D	12	12	0.10	TSM < TV	Step 1	1.0	0.001	LOW
Cu-D	12	12	0.50	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	6.0	TSM < TV	Step 1	75	0.019	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	6.4	TSM < TV	Step 1	21	0.033	LOW
Pb-D	12	12	0.10	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.20	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	12	TSM < TV	Step 1	20	0.412	LOW

Table C-17 Anjolek SDA 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	ent	TV	Statistical test	Diek Assessment
Anjolek	N	N(Test)	Median	Result	Go to	TV	Result (P=0.05)	Risk Assessment
рН	10	1	7.7	LowerTV <tsm<uptv< td=""><td>Step 1/2</td><td>6.0-8.1</td><td>0.018/ 0.03</td><td>LOW</td></tsm<uptv<>	Step 1/2	6.0-8.1	0.018/ 0.03	LOW
TSS	11	11	63	TSM < TV	Step 1	2837	0.002	LOW
Ag-D	11	11	0.05	TSM < TV	Step 1	0.2	0.002	LOW
As-D	11	11	0.80	TSM < TV	Step 1	24	0.002	LOW
Cd-D	11	11	0.10	TSM < TV	Step 1	0.4	0.002	LOW
Cr-D	11	11	0.75	TSM < TV	Step 1	1.0	0.002	LOW
Cu-D	11	11	22	TSM < TV	Step 1	4.1	0.002	LOW
Fe-D	11	11	0.05	TSM < TV	Step 1	75	0.153	POTENTIAL
Hg-D	11	11	0.05	TSM < TV	Step 1	0.6	0.002	LOW
Ni-D	11	11	0.66	TSM < TV	Step 1	21	0.002	LOW
Pb-D	11	11	0.63	TSM < TV	Step 1	8.3	0.002	LOW
Se-D	11	11	0.20	TSM < TV	Step 1	11	0.002	LOW
Zn-D	10	1	6.8	TSM < TV	Step 1	20	0.051	LOW

Table C-18 Kaiya at Yuyan Bridge 2015 median against upper river TV (μg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Risk Assessment
Kaiya	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSMENT
рН	11	11	7.62	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.002	LOW
TSS	12	12	3850	TSM ≥ TV	Step 2	2837	0.240	POTENTIAL
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	1.25	TSM < TV	Step 1	24	0.01	LOW
Cd-D	12	12	0.05	TSM < TV	Step 1	0.4	0.001	LOW
Cr-D	12	12	0.10	TSM < TV	Step 1	1.0	0.001	LOW
Cu-D	12	12	0.76	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	5.0	TSM < TV	Step 1	75	0.128	POTENTIAL
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	0.77	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.19	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.43	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	3.1	TSM < TV	Step 1	20	0.002	LOW

Table C-19 Kaiya River d/s Anjolek Erodible Dump 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site)	Initial Assessme	nt	TV	Statistical test	Risk Assessment
Kaiya	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	nisk Assessillelit
рН	11	11	7.50	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.002	LOW
TSS	12	12	3763	TSM ≥ TV	Step 2	2837	0.085	POTENTIAL
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	0.995	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.05	TSM < TV	Step 1	0.4	0.001	LOW
Cr-D	12	12	0.10	TSM < TV	Step 1	1.0	0.019	LOW
Cu-D	12	12	0.56	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	8.2	TSM < TV	Step 1	75	0.003	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	0.63	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.17	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.42	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	4.0	TSM < TV	Step 1	20	0.002	LOW

Table C-20 Kogai Culvert 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Risk Assessment
Kogai	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSMENT
рН	12	12	7.7	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.001 / 0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.001 / 0.002	LOW
TSS	13	13	180	TSM < TV	Step 1	2837	0.001	LOW
Ag-D	13	13	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	13	13	1.2	TSM < TV	Step 1	24	0.001	LOW
Cd-D	13	13	0.06	TSM < TV	Step 1	0.4	0.003	LOW
Cr-D	13	13	0.11	TSM < TV	Step 1	1.0	0.001	LOW
Cu-D	13	13	1.0	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	13	13	9.8	TSM < TV	Step 1	75	0.02	LOW
Hg-D	13	13	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	13	13	0.74	TSM < TV	Step 1	21	0.001	LOW
Pb-D	13	13	0.38	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	13	13	0.20	TSM < TV	Step 1	11	0.001	LOW
Zn-D	12	12	10.3	TSM < TV	Step 1	20	0.305	POTENTIAL

Table C-21 Kogai Stable Dump Toe Area 2015 median against upper river TV (μg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Diek Assessment
Kogai	N	N(Test)	Median	Result	Go to	TV	Result (P=0.05)	Risk Assessment
рН	11	11	7.78	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.002	LOW
TSS	12	12	68	TSM < TV	Step 1	2837	0.001	LOW
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	0.72	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	1.75	TSM ≥ TV	Step 2	0.4	0.001	POTENTIAL
Cr-D	12	12	0.10	TSM < TV	Step 1	1.0	0.001	LOW
Cu-D	12	12	0.63	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	5.7	TSM < TV	Step 1	75	0.019	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	2.3	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.52	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.20	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	350	TSM ≥ TV	Step 2	20	0.002	POTENTIAL

Table C-22 Lime Plant Discharge 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessm	ent	TV	Statistical test	Diek Assessment
L Plant	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	Risk Assessment
рН	11	11	11.15	TSM ≥ TV	Step 2	6.0-8.1	0.002	POTENTIAL
TSS	12	12	382	TSM < TV	Step 1	2837	0.019	LOW
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	0.19	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.05	TSM < TV	Step 1	0.4	0.001	LOW
Cr-D	12	11	3.4	TSM ≥ TV	Step 2	1.0	0.003	POTENTIAL
Cu-D	12	12	0.60	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	2.5	TSM < TV	Step 1	75	0.001	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	0.50	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.10	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.20	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	0.88	TSM < TV	Step 1	20	0.002	LOW

Table C-23 Wendoko Creek d/s Anawe Nth 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Diek Assessment
Wend	N	N(Test)	Median	Result	Go to	TV	Result (P=0.05)	Risk Assessment
рН	11	11	7.57	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.002	LOW
TSS	12	12	57	TSM < TV	Step 1	2837	0.002	LOW
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	1.05	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.76	TSM ≥ TV	Step 2	0.4	0.008	POTENTIAL
Cr-D	12	12	0.10	TSM < TV	Step 1	1.0	0.019	LOW
Cu-D	12	12	0.64	TSM < TV	Step 1	4.1	0.002	LOW
Fe-D	12	12	3.6	TSM < TV	Step 1	75	0.019	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	1.8	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.26	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.64	TSM < TV	Step 1	11	0.001	LOW
Zn-D	11	11	310	TSM ≥ TV	Step 2	20	0.002	POTENTIAL

Table C-24 Yakatabari Creek d/s 28 level 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site	•	Initial Assessme	nt	TV	Statistical test	Risk Assessment
Yakatab	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSMENT
рН	11	11	7.63	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.002	LOW
TSS	12	12	6237	TSM ≥ TV	Step 2	2837	0.046	POTENTIAL
Ag-D	12	12	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	13	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.05	TSM < TV	Step 1	0.4	0.001	LOW
Cr-D	12	12	1.35	TSM ≥ TV	Step 2	1.0	0.128	POTENTIAL
Cu-D	12	12	0.95	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	7.5	TSM < TV	Step 1	75	0.163	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	1.60	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	1.43	TSM < TV	Step 1	8.3	0.002	LOW
Se-D	12	12	0.36	TSM < TV	Step 1	11	0.001	LOW
Zn-D	12	12	6.6	TSM < TV	Step 1	20	0.028	POTENTIAL

Table C-25 Yunarilama at Portal 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Disc	charge Site)	Initial Assessme	nt	TV	Statistical test	Diek Assessment
Yunar	N	N(Test)	Median	Result	Go to	TV	Result (P=0.05)	Risk Assessment
рН	11	11	7.4	LowerTV <tsm<uptv< td=""><td>Step 1</td><td>6.0-8.1</td><td>0.012 / 0.002</td><td>LOW</td></tsm<uptv<>	Step 1	6.0-8.1	0.012 / 0.002	LOW
TSS	11	11	8415	TSM ≥ TV	Step 2	2837	0.010	POTENTIAL
Ag-D	11	11	0.05	TSM < TV	Step 1	0.2	0.001	LOW
As-D	12	12	3.15	TSM < TV	Step 1	24	0.001	LOW
Cd-D	12	12	0.19	TSM < TV	Step 1	0.4	0.001	LOW
Cr-D	12	12	0.13	TSM < TV	Step 1	1.0	0.001	LOW
Cu-D	12	12	0.62	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	12	12	9.6	TSM < TV	Step 1	75	0.019	LOW
Hg-D	12	12	0.05	TSM < TV	Step 1	0.6	0.001	LOW
Ni-D	12	12	4.7	TSM < TV	Step 1	21	0.001	LOW
Pb-D	12	12	0.46	TSM < TV	Step 1	8.3	0.001	LOW
Se-D	12	12	0.96	TSM < TV	Step 1	11	0.001	LOW
Zn-D	12	12	8.7	TSM < TV	Step 1	20	0.003	LOW

Table C-26 Tailings Slurry 2015 median against upper river TV (µg/L for metals, std pH units for pH and mg/L for TSS)

	Discha	arge Site		Initial Assessment		TV	Statistical test	Risk Assessment
Tails W	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	nisk Assessillelit
рН	47	46	6.4	Lower TV < TSM < Higher TV	Step 1 / 2	6.0-8.1	<0.001/<0.001	LOW
TSS	47	NA	161000	TSM > TV	Step 2	2837	NA	POTENTIAL
Ag-D	47	47	0.05	TSM < TV	Step 1	0.2	< 0.001	LOW
As-D	47	47	0.29	TSM < TV	Step 1	24	< 0.001	LOW
Cd-D	47	NA	73	TSM > TV	Step 2	0.4	NA	POTENTIAL
Cr-D	47	47	0.10	TSM < TV	Step 1	1.0	< 0.001	LOW
Cu-D	47	NA	30	TSM > TV	Step 2	4.1	NA	POTENTIAL
Fe-D	47	NA	5400	TSM > TV	Step 2	75	NA	POTENTIAL
Hg-D	47	47	0.10	TSM < TV	Step 1	0.6	< 0.001	LOW
Ni-D	47	NA	1600	TSM > TV	Step 2	21	NA	POTENTIAL
Pb-D	47	47	0.10	TSM < TV	Step 1	8.3	<0.001	LOW
Se-D	47	47	2.4	TSM < TV	Step 1	11	<0.001	LOW
Zn-D	47	NA	1900	TSM > TV	Step 2	20	NA	POTENTIAL

Table C-28 Tailings Solids 2015 median against upper river TV (mg/kg)

	Disc	charge Site)	Initial Assessme	ent	TV	Statistical test	Risk Assessment	
Tails S	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	nisk Assessment	
Ag-WAE	27	27	0.5	TSM < TV	Step 1	1	< 0.001	LOW	
As- WAE	27	NA	74	TSM > TV	Step 2	20	NA	POTENTIAL	
Cd- WAE	27	NA	4.0	TSM > TV	Step 2	1.5	NA	POTENTIAL	
Cr- WAE	27	27	22	TSM < TV	Step 1	80	<0.001	LOW	
Cu- WAE	27	NA	84	TSM > TV	Step 2	65	NA	POTENTIAL	
Hg- WAE	27	NA	0.16	TSM > TV	Step 2	0.15	NA	POTENTIAL	
Ni- WAE	27	26	22	TSM < TV	Step 1	27	<0.001	LOW	
Pb- WAE	27	NA	74	TSM > TV	Step 2	50	NA	POTENTIAL	
Se- WAE	27	NA	0.5	TSM = TV	Step 3	0.50	NA	LOW	
Zn- WAE	27	NA	680	TSM > TV	Step 2	200	NA	POTENTIAL	

APPENDIX D. WATER QUALITY – RISK AND PERFORMANCE ASSESSMENT – DETAILS OF STATISTICAL ANALYSIS AND BOX PLOTS

Table D-1 Expanded risk matrix – water quality – metals and TSS

Initial A	ssessment Result				Go То
TSM < T	V		Step 1		
TSM ≥ T	V and TV, TSM and	Step 2			
TSM = 7	V and TV, TSM and	d full TSM data set ≤	LOR		Step 3
Step	Alt Hypothesis	esult	Risk Assessment		
			P < 0.05	Accept Alt	LOW
1	TSM < TV	TSM = TV	P > 0.05	Accept Null	POTENTIAL
		Accept Neither	ND		
2	TSM ≥ TV and TV	LOR	POTENTIAL		
3	TSM = TV and TV	≤ LOR	LOW		

TSM = Test Site Median

ND = No determination

Table D-2 Expanded risk matrix – water quality – pH

Initial	Assessment Result				Go To
Lower	TV < TSM < Upper TV		Step 1		
TSM ≤	Lower TV	Step 3			
Step	Alt Hypothesis	Null Hypothesis	Sig Test R	esult	Risk Assessment
1	TSM < Upper TV	STEP 2			
'	TSIVI < Opper TV	TSM = Upper TV	P > 0.05	Accept Null	POTENTIAL
			P < 0.05	Accept Alt	LOW
2	TSM > Lower TV	Accept Null	POTENTIAL		
		ND			
3	TSM ≤ Lower TV	POTENTIAL			

TSM = Test Site Median

ND = No determination

Table D-3 Water quality upper river test sites - SG1 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

		Test Site	!	Initial Assessment		TV	Statistical test	Risk Assessment	
SG1	N	N(Test)	Median	Result	Go to	I V	Result (P=0.05)	HISK ASSESSITION	
рН	6	6	7.4	Lower TV < TSM < Upper TV	Step 1/2	6.0-8.1	NA	LOW	
TSS*	6	6	6498	TSM > TV	Step 2	2837	NA	POTENTIAL	
Ag-D*	6	6	0.05	TSM < TV	Step 1	0.2	NA	LOW	
As-D*	6	6	1.5	TSM < TV	Step 1	24	NA	LOW	
Cd-D*	6	6	1.4	TSM > TV	Step 2	0.4	NA	POTENTIAL	
Cr-D*	6	6	0.14	TSM < TV	Step 1	1.0	NA	LOW	
Cu-D*	6	6	1.8	TSM < TV	Step 1	4.1	NA	LOW	
Fe-D*	6	6	14	TSM < TV	Step 1	75	NA	LOW	
Hg-D*	6	6	0.05	TSM < TV	Step 1	0.6	NA	LOW	
Ni-D*	6	6	3.5	TSM < TV	Step 1	21	NA	LOW	
Pb-D*	6	6	0.18	TSM < TV	Step 1	8.3	NA	LOW	
Se-D*	6	6	0.25	TSM < TV	Step 1	11	NA	LOW	
Zn-D *	6	6	31	TSM > TV	Step 2	20	NA	POTENTIAL	

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table D-4 Water quality upper river test sites - SG2 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

		Test Site		Initial Assessment		TV	Statistical test	Risk Assessment	
SG2	N	N(Test)	Median	Result	Go to	I V	Result (P=0.05)	nisk Assessinent	
рН	14	13	7.5	Lower TV < TSM < Upper TV	Step 1/2	6.0-8.1	0.001 / 0.001	LOW	
TSS	14	14	1831	TSM < TV	Step 1	2837	0.002	LOW	
Ag-D	14	14	0.05	TSM < TV	Step 1	0.2	0.001	LOW	
As-D	14	14	1.3	TSM < TV	Step 1	24	0.001	LOW	
Cd-D	14	13	0.22	TSM < TV	Step 1	0.4	0.050	LOW	
Cr-D	14	14	0.14	TSM < TV	Step 1	1.0	0.009	LOW	
Cu-D	14	14	1.6	TSM < TV	Step 1	4.1	0.001	LOW	
Fe-D	14	14	6.3	TSM < TV	Step 1	75	0.009	LOW	
Hg-D	14	14	0.05	TSM < TV	Step 1	0.6	0.001	LOW	
Ni-D	14	14	1.5	TSM < TV	Step 1	21	0.001	LOW	
Pb-D	14	14	0.10	TSM < TV	Step 1	8.3	0.001	LOW	
Se-D	14	14	0.20	TSM < TV	Step 1	11	0.001	LOW	
Zn-D	14	13	7.7	TSM < TV	Step 1	20	0.002	LOW	

Table D-5 Water quality upper river test sites - Wasiba 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

	Te	est Site		Initial Assessment			Statistical test	Risk Assessment
Wasiba	N	N(Test)	Median	Result	Go to	TV	Result (P=0.05)	hisk Assessment
рН	16	15	7.4	Lower TV < TSM < Upper TV	Step 1/2	6.0-8.1	<0.001 / <0.001	LOW
TSS	16	15	1413	TSM < TV	Step 1	2837	< 0.001	LOW
Ag-D	16	16	0.05	TSM < TV	Step 1	0.2	<0.001	LOW
As-D	16	16	1.8	TSM < TV	Step 1	24	< 0.001	LOW
Cd-D	16	16	0.15	TSM < TV	Step 1	0.4	0.004	LOW
Cr-D	16	16	0.20	TSM < TV	Step 1	1.0	0.004	LOW
Cu-D	16	16	1.6	TSM < TV	Step 1	4.1	0.001	LOW
Fe-D	16	16	3.3	TSM < TV	Step 1	75	< 0.001	LOW
Hg-D	16	16	0.05	TSM < TV	Step 1	0.6	< 0.001	LOW
Ni-D	16	16	1.1	TSM < TV	Step 1	21	< 0.001	LOW
Pb-D	16	16	0.10	TSM < TV	Step 1	8.3	<0.001	LOW
Se-D	16	16	0.20	TSM < TV	Step 1	11	<0.001	LOW
Zn-D	16	16	5.4	TSM < TV	Step 1	20	<0.001	LOW

Table D-6 Water quality upper river test sites - Wankipe 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

	Te	est Site		Initial Assessment		TV	Statistical test	Risk Assessment
Wankipe	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	hisk Assessment
рН	16	15	7.5	Lower TV < TSM < Upper TV	Step ½	6.0-8.1	<0.001 / <0.001	LOW
TSS	16	15	820	TSM < TV	Step 1	2837	0.001	LOW
Ag-D	16	16	0.05	TSM < TV	Step 1	0.2	< 0.001	LOW
As-D	16	16	1.7	TSM < TV	Step 1	24	< 0.001	LOW
Cd-D	16	16	0.13	TSM < TV	Step 1	0.4	< 0.001	LOW
Cr-D	16	16	0.20	TSM < TV	Step 1	1.0	< 0.001	LOW
Cu-D	16	16	1.4	TSM < TV	Step 1	4.1	< 0.001	LOW
Fe-D	16	16	3.3	TSM < TV	Step 1	75	0.004	LOW
Hg-D	16	16	0.05	TSM < TV	Step 1	0.6	< 0.001	LOW
Ni-D	16	16	0.98	TSM < TV	Step 1	21	< 0.001	LOW
Pb-D	16	16	0.10	TSM < TV	Step 1	8.3	< 0.001	LOW
Se-D	16	16	0.20	TSM < TV	Step 1	11	< 0.001	LOW
Zn-D	16	16	5.0	TSM < TV	Step 1	20	< 0.001	LOW

Table D-7 Water quality upper river test sites - SG3 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

		Test Site		Initial Assessment		TV	Statistical test	Risk Assessment
SG3	N	N(Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSIIIEIIL
рН	193	192	7.6	Lower TV < TSM < Upper TV	Step 1 / 2	6.0-8.1	<0.001 /<0.001	LOW
TSS	193	192	1133	TSM < TV	Step 1	2837	< 0.001	LOW
Ag-D	193	193	0.05	TSM < TV	Step 1	0.2	< 0.001	LOW
As-D	193	193	1.7	TSM < TV	Step 1	24	< 0.001	LOW
Cd-D	193	193	0.07	TSM < TV	Step 1	0.4	< 0.001	LOW
Cr-D	193	177	0.17	TSM < TV	Step 1	1.0	< 0.001	LOW
Cu-D	193	177	1.6	TSM < TV	Step 1	4.1	< 0.001	LOW
Fe-D	193	193	4.8	TSM < TV	Step 1	75	< 0.001	LOW
Hg-D	193	193	0.05	TSM < TV	Step 1	0.6	< 0.001	LOW
Ni-D	193	193	0.67	TSM < TV	Step 1	21	< 0.001	LOW
Pb-D	193	193	0.10	TSM < TV	Step 1	8.3	< 0.001	LOW
Se-D	193	193	0.20	TSM < TV	Step 1	11	< 0.001	LOW
Zn-D	193	161	4.3	TSM < TV	Step 1	20	<0.001	LOW

Table D-8 Water quality lower river test sites - Bebelubi 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

	Т	est Site		Initial Assessment		TV	Statistical test	Diek Assessment
Bebelubi	N	N (Test)	Median	Result	Go to	1 V	Result (P=0.05)	Risk Assessment
рН*	8	8	7.3	Lower TV < TSM < Upper TV	Step 1 / 2	6.0-8.2	NA	LOW
TSS*	8	8	353	TSM < TV	Step 1	983	NA	LOW
Ag-D*	8	8	0.05	TSM < TV	Step 1	0.2	NA	LOW
As-D*	8	8	1.6	TSM < TV	Step 1	24	NA	LOW
Cd-D*	8	8	0.08	TSM < TV	Step 1	0.2	NA	LOW
Cr-D*	8	8	0.20	TSM < TV	Step 1	1	NA	LOW
Cu-D*	8	8	1.5	TSM > TV	Step 2	1.4	NA	POTENTIAL
Fe-D*	8	8	5.6	TSM < TV	Step 1	75	NA	LOW
Hg-D*	8	8	0.05	TSM < TV	Step 1	0.6	NA	LOW
Ni-D*	8	8	0.51	TSM < TV	Step 1	15	NA	LOW
Pb-D*	8	8	0.10	TSM < TV	Step 1	2.8	NA	LOW
Se-D*	8	8	0.20	TSM < TV	Step 1	11	NA	LOW
Zn-D*	8	8	5.6	TSM < TV	Step 1	7	NA	LOW

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table D-9 Water quality lower river test sites - SG4/Tiumsinawam 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

	Te	st Site		Initial Assessment		TV	Statistical test	Risk Assessment
Tiumsinawam	N	N (Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSIIIEIIL
рН*	8	8	7.4	Lower TV < TSM < Upper TV	Step 1 / 2	6.0-8.2	NA	LOW
TSS*	8	8	516	TSM < TV	Step 1	983	NA	LOW
Ag-D*	8	8	0.05	TSM < TV	Step 1	0.2	NA	LOW
As-D*	8	8	1.3	TSM < TV	Step 1	24	NA	LOW
Cd-D*	8	8	0.07	TSM < TV	Step 1	0.2	NA	LOW
Cr-D*	8	8	0.17	TSM < TV	Step 1	1	NA	LOW
Cu-D*	8	8	1.4	TSM = TV	Step 2	1.4	NA	POTENTIAL
Fe-D*	8	8	13.5	TSM < TV	Step 1	75	NA	LOW
Hg-D*	8	8	0.05	TSM < TV	Step 1	0.6	NA	LOW
Ni-D*	8	8	0.5	TSM < TV	Step 1	15	NA	LOW
Pb-D*	8	8	0.11	TSM < TV	Step 1	2.8	NA	LOW
Se-D*	8	8	0.20	TSM < TV	Step 1	11	NA	LOW
Zn-D*	8	8	4.9	TSM < TV	Step 1	7	NA	LOW

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table D-10 Water quality lower river test sites - SG5 2015 median (µg/L for metals, std pH units for pH and mg/L for TSS)

	Te	st Site		Initial Assessment		TV	Statistical Test	Risk Assessment	
SG5	N	N (Test)	Median	Result	Go to	1 V	Result (P=0.05)	nisk Assessifierit	
pH*	9	9	7.3	Lower TV < TSM < Upper TV	Step 1 / 2	6.0-8.2	NA	LOW	
TSS*	9	9	336	TSM < TV	Step 1	983	NA	LOW	
Ag-D*	5	5	0.05	TSM < TV	Step 1	0.2	NA	LOW	
As-D*	9	9	1.0	TSM < TV	Step 1	24	NA	LOW	
Cd-D*	9	9	0.05	TSM < TV	Step 1	0.2	NA	LOW	
Cr-D*	9	9	0.13	TSM < TV	Step 1	1.0	NA	LOW	
Cu-D*	9	9	1.1	TSM < TV	Step 1	1.4	NA	LOW	
Fe-D*	9	9	10	TSM < TV	Step 1	75	NA	LOW	
Hg-D*	9	9	0.05	TSM < TV	Step 1	0.6	NA	LOW	
Ni-D*	9	9	0.50	TSM < TV	Step 1	15	NA	LOW	
Pb-D*	9	9	0.10	TSM < TV	Step 1	2.8	NA	LOW	
Se-D*	9	9	0.20	TSM < TV	Step 1	11	NA	LOW	
Zn-D*	9	9	1.5	TSM < TV	Step 1	7	NA	LOW	

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

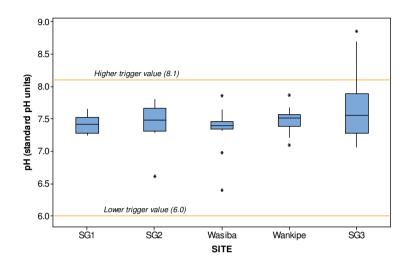


Figure D-1 pH in water upper river test sites 2015

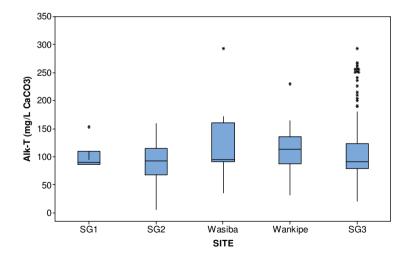


Figure D-3 Alkalinity in water upper river test sites 2015

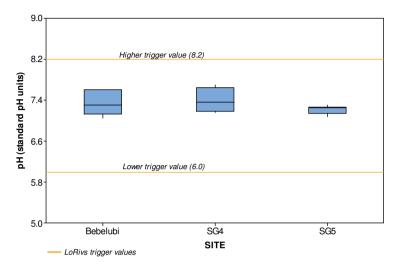


Figure D-2 pH in water at lower river test sites 2015

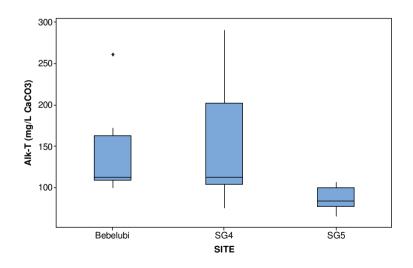


Figure D-4 Alkalinity in water lower river test sites 2015

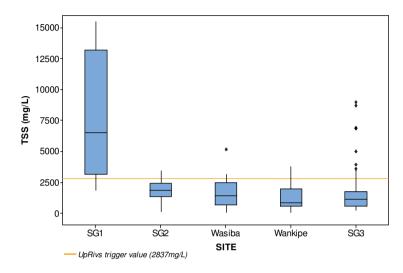


Figure D-5 TSS in water upper river test sites 2015

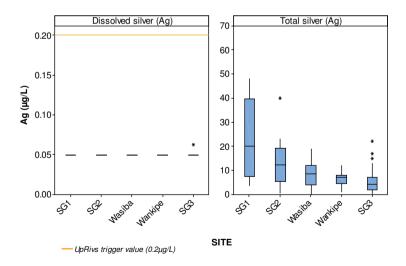


Figure D-7 Silver in water upper river test sites 2015

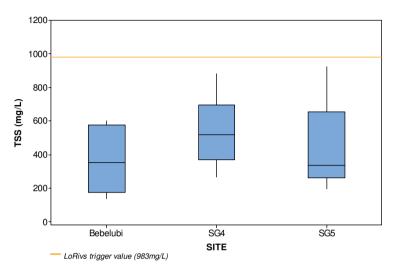


Figure D-6 TSS in water lower river test sites 2015

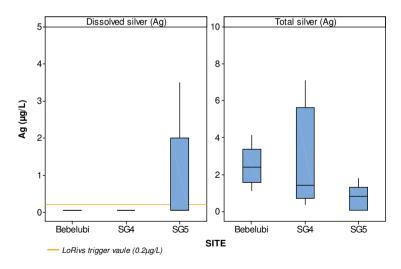


Figure D-8 Silver in water lower river test sites 2015

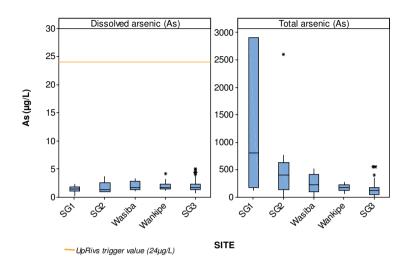


Figure D-9 Arsenic in water upper river test sites 2015

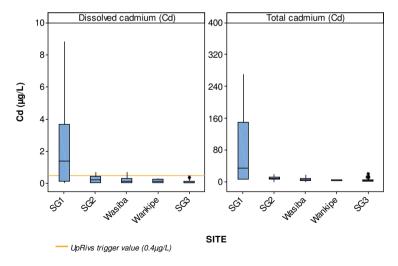


Figure D-11 Cadmium in water upper river test sites 2015

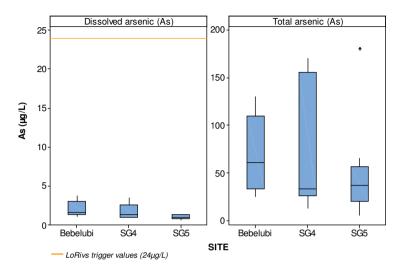


Figure D-10 Arsenic in water lower river test sites 2015

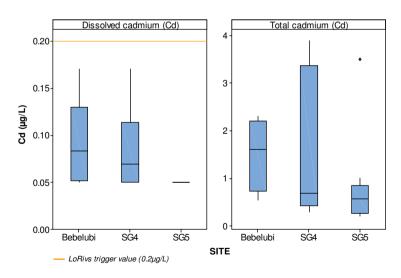


Figure D-12 Cadmium in water lower river test sites 2015

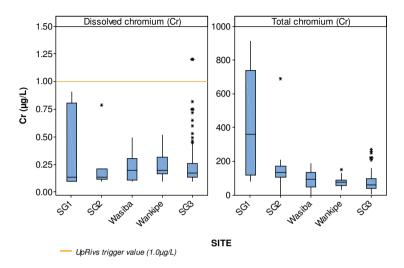


Figure D-13 Chromium in water upper river test sites 2015

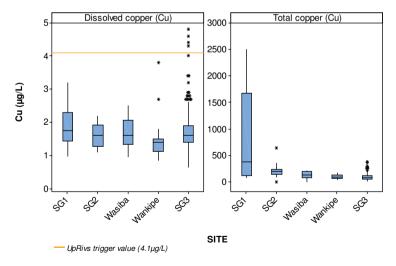


Figure D-15 Copper in water upper river test sites 2015

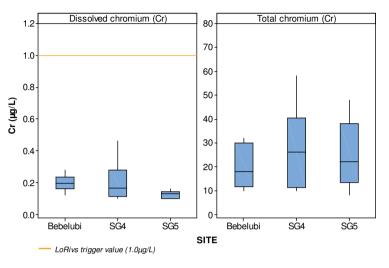


Figure D-14 Chromium in water lower river test sites 2015

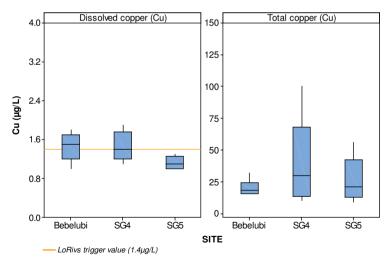


Figure D-16 Copper in water lower river test sites 2015

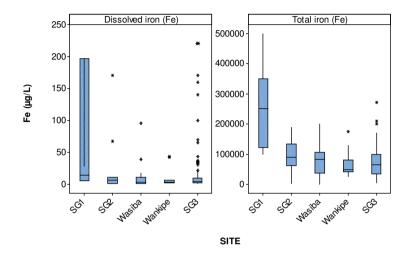


Figure D-17 Iron in water upper river test sites 2015

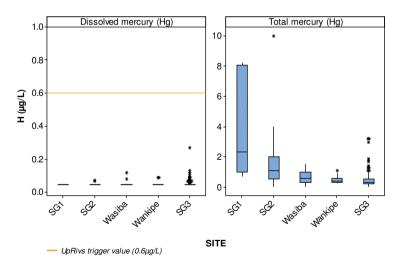


Figure D-19 Mercury in water upper river test sites 2015

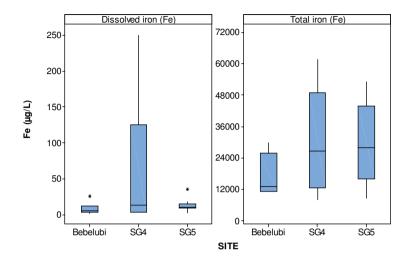


Figure D-18 Iron in water lower river test sites 2015

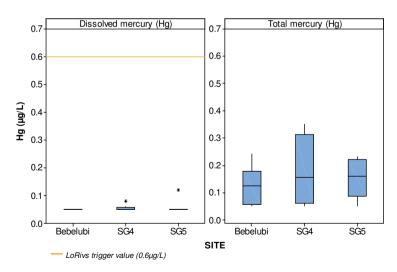


Figure D-20 Mercury in water lower river test sites 2015

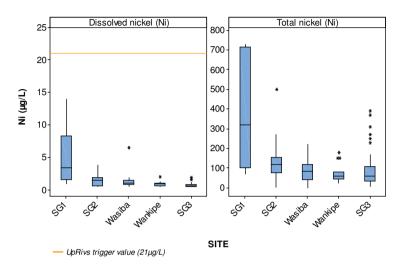


Figure D-21 Nickel in water upper river test sites 2015

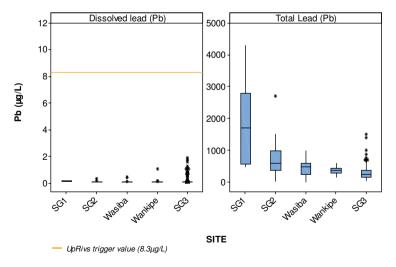


Figure D-23 Lead in water upper river test sites 2015

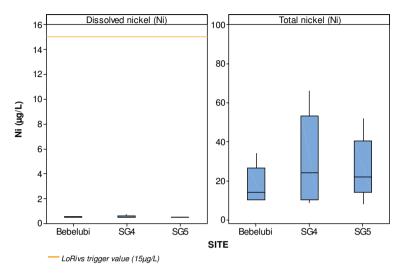


Figure D-22 Nickel in water lower river test sites 2015

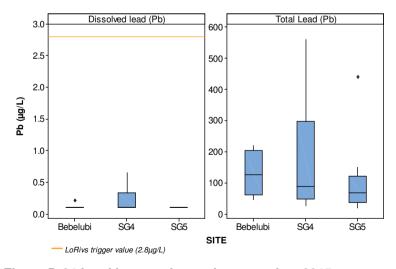


Figure D-24 Lead in water lower river test sites 2015

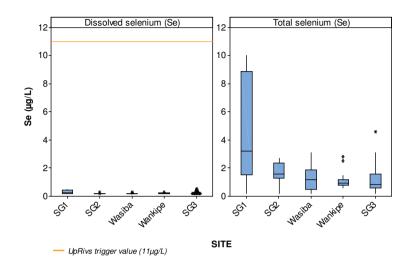


Figure D-25 Selenium in water upper river test sites 2015

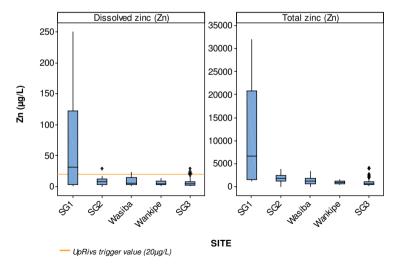


Figure D-27 Zinc in water upper river test sites 2015

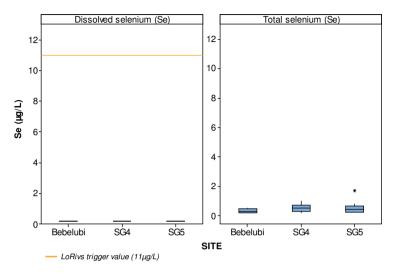


Figure D-26 Selenium in water lower river test sites 2015

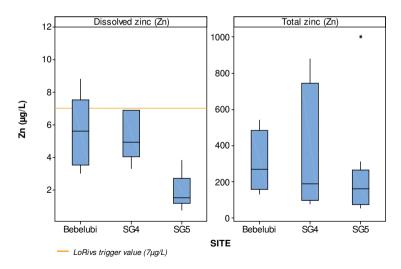


Figure D-28 Zinc in water lower river test sites 2015

Table D-11 Performance assessment – Based on the trend of the annual median of water quality indicators at upper river test sites relative to the trend of the annual median of water quality indicators at upper river reference sites throughout the history of the operation using Spearman Rank Test.

Water Quality		Spearman's	P-Value	
Site	Parameter	rho	(P=0.05)	Trend 2011 - 2015
	рН	-0.638	<0.001	Reduced over time
	TSS	-0.431	0.003	Reduced over time
	Ag-D	-0.506	<0.001	Reduced over time
	As-D	-0.139	0.362	No change over time
	Cd-D	0.182	0.232	No change over time
SG1	Cr-D	-0.831	<0.001	Reducing over time
(Trend of Annual Medians	Cu-D	-0.072	0.638	No change over time
from 2011 - 2015)	Fe-D	0.017	0.912	No change over time
	Hg-D	-0.697	<0.001	Reduced over time
	Ni-D	0.225	0.137	No change over time
	Pb-D	-0.475	<0.001	Reduced over time
	Se-D	-0.713	<0.001	Reduced over time
	Zn-D	0.191	0.209	No change over time
	рН	-0.471	<0.001	Reduced over time
	TSS	0.033	0.816	No change over time
	Ag-D	-0.817	<0.001	Reduced over time
	As-D	-0.151	0.284	No change over time
	Cd-D	-0.110	0.439	No change over time
SG2	Cr-D	-0.772	<0.001	Reduced over time
(Trend of Annual Medians	Cu-D	-0.169	0.230	No change over time
from 2011 - 2015)	Fe-D	-0.220	0.117	No change over time
	Hg-D	-0.837	<0.001	Reduced over time
	Ni-D	0.201	0.153	No change over time
	Pb-D	-0.717	<0.001	Reduced over time
	Se-D	-0.909	<0.001	Reduced over time
	Zn-D	-0.220	0.121	No change over time
	рН	-0.085	<0.001	Reduced over time
	TSS	0.159	0.449	No change over time
	Ag-D*	-0.906	<0.001	No change over time
	As-D*	0.355	0.075	No change over time
	Cd-D*	-0.246	0.226	No change over time
Wasiba	Cr-D*	-0.756	<0.001	No change over time
(Trend of Annual Medians	Cu-D*	0.233	0.253	No change over time
from 2011 - 2015)	Fe-D	-0.312	0.121	No change over time
,	Hg-D*	0.228	0.263	No change over time
	Ni-D*	0.270	0.182	No change over time
	Pb-D*	-0.790	<0.001	No change over time
	Se-D	-0.808	<0.001	Reduced over time
	Zn-D	0.248	0.222	No change over time

Water Quality	Parameter	Spearman's	P-Value	Trend 2011 - 2015
Site	rarameter	rho	(P=0.05)	11ena 2011 - 2013
	рН	0.126	0.357	No change over time
	TSS	0.328	0.016	Increased over time
	Ag-D*	0.411	0.002	No change over time
	As-D*	0.292	0.029	No change over time
	Cd-D*	0.025	0.855	No change over time
Wankipe	Cr-D*	0.011	0.937	No change over time
· ·	Cu-D*	-0.146	0.282	No change over time
(Trend of Annual Medians	Fe-D	-0.305	0.022	Reduced over time
from 2011 - 2015)	Hg-D*	0.177	0.192	No change over time
	Ni-D*	-0.207	0.126	No change over time
	Pb-D*	-0.029	0.834	No change over time
	Se-D	-0.518	<0.001	Reduced over time
	Zn-D	-0.067	0.624	No change over time
	рН	-0.597	< 0.001	Reduced over time
	TSS	-0.122	<0.001	Reduced over time
	Ag-D	-0.671	< 0.001	Reduced over time
	As-D*	0.133	<0.001	No change over time
	Cd-D	-0.506	< 0.001	Reduced over time
SG3	Cr-D	-0.828	< 0.001	Reduced over time
(Trend of Annual Medians	Cu-D*	0.252	< 0.001	No change over time
from 2011 - 2015)	Fe-D	-0.108	< 0.001	Reduced over time
,	Hg-D	-0.815	< 0.001	Reduced over time
	Ni-D	-0.640	<0.001	Reduced over time
	Pb-D	-0.550	< 0.001	Reduced over time
	Se-D	-0.841	<0.001	Reduced over time
	Zn-D	-0.083	0.016	Reduced over time

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table D-12 Performance assessment – Based on the trend of the annual median of water quality indicators at lower river test sites relative to the trend of the annual median of water quality indicators at lower river reference sites throughout the history of the operation using Spearman Rank Test.

Water Quality		Spearman's	P-Value	
Site	Parameter	rho	(P=0.05)	Trend 2011 - 2015
	рН	-0.627	<0.001	Reducing over time
	TSS	-0.342	0.045	Reducing over time
	Ag-D	-0.706	<0.001	Reducing over time
	As-D	0.467	0.002	Increasing over time
	Cd-D	-0.701	<0.001	Reducing over time
Bebelubi	Cr-D	-0.858	<0.001	Reducing over time
(Trend of Annual Medians	Cu-D	0.180	0.261	No change over time
from 2011 - 2015)	Fe-D	0.075	0.642	No change over time
	Hg-D	-0.776	<0.001	Reducing over time
	Ni-D	-0.617	<0.001	Reducing over time
	Pb-D	-0.642	<0.001	Reducing over time
	Se-D	-0.888	<0.001	Reducing over time
	Zn-D	0.225	0.157	No change over time
	рН	-0.694	<0.001	Reducing over time
	TSS	-0.343	0.047	Reducing over time
	Ag-D	-0.730	<0.001	Reducing over time
	As-D	0.048	0.776	No change over time
	Cd-D	-0.724	<0.001	Reducing over time
Tiumsinawam	Cr-D	-0.903	<0.001	Reducing over time
(Trend of Annual Medians	Cu-D	0.224	0.183	No change over time
from 2011 - 2015)	Fe-D	0.324	0.051	No change over time
	Hg-D	-0.838	<0.001	Reducing over time
	Ni-D	-0.725	<0.001	Reducing over time
	Pb-D	-0.543	<0.001	Reducing over time
	Se-D	-0.919	<0.001	Reducing over time
	Zn-D	0.578	<0.001	Reducing over time
	рН	0.248	0.321	No change over time
	TSS	0.675	0.003	Increasing over time
	Ag-D	-0.747	0.001	Reducing over time
	As-D*	0.197	0.418	No change over time
	Cd-D	-0.688	0.001	Reducing over time
SG5	Cr-D*	-0.124	0.613	No change over time
(Trend of Annual Medians	Cu-D*	0.615	0.005	No change over time
from 2011 - 2015)	Fe-D	-0.633	0.004	Reducing over time
,	Hg-D	-0.702	0.001	Reducing over time
	Ni-D	-0.688	0.001	Reducing over time
	Pb-D*	-0.432	0.065	No change over time
	Se-D*	≤LOR	≤LOR	No change over time
	Zn-D	0.235	0.333	No change over time

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table D-13 Water quality Lake Murray and ORWBs test sites - Central Lake Murray 2015 median (μg/L)

	T	est Site		Initial Assessment					
Central Lake	N	N (Test)	Median	Result	Go to	TV	Statistical Test Result (P=0.05)	Risk Assessment	
рН	11	11	6.6	Lower TV < TSM < Upper TV	Step 1 / 2	5.3-8.0	0.002 / 0.002	LOW	
TSS	11	11	9.0	TSM < TV	Step 1	23	0.028	LOW	
Ag-D	11	NA	0.05	TSM = TV	Step 3	0.05	NA	LOW	
As-D	11	11	0.31	TSM < TV	Step 1	24	0.002	LOW	
Cd-D	11	11	0.05	TSM < TV	Step 1	0.72	0.002	LOW	
Cr-D	11	11	0.10	TSM < TV	Step 1	1	0.002	LOW	
Cu-D	11	11	0.60	TSM < TV	Step 1	1.4	0.002	LOW	
Fe-D	11	11	33	TSM < TV	Step 1	340	0.002	LOW	
Hg-D	11	11	0.05	TSM < TV	Step 1	0.16	0.002	LOW	
Ni-D	11	11	0.50	TSM < TV	Step 1	11	0.002	LOW	
Pb-D	11	11	0.10	TSM < TV	Step 1	3.4	0.002	LOW	
Se-D	11	11	0.20	TSM < TV	Step 1	11	0.002	LOW	
Zn-D	11	11	2.5	TSM < TV	Step 1	8	0.002	LOW	

Table D-14 Water quality Lake Murray and ORWBs test sites - South Lake Murray 2015 median ($\mu g/L$)

	Т	est Site		Initial Assessment					
Southern Lake	N	N (Test)	Median	Result	Go to	TV	Statistical Test Result (P=0.05)	Risk Assessment	
рН	10	10	7.0	Lower TV < TSM < Upper TV	Step 1 / 2	5.3-8.0	0.003 / 0.003	LOW	
TSS	10	10	11	TSM < Upper TV	Step 1	23	0.007	LOW	
Ag-D	10	NA	0.05	TSM = TV	Step 3	0.05	NA	LOW	
As-D	10	10	0.91	TSM < Upper TV	Step 1	24	0.003	LOW	
Cd-D	10	10	0.05	TSM < Upper TV	Step 1	0.72	0.003	LOW	
Cr-D	10	10	0.10	TSM < Upper TV	Step 1	1	0.003	LOW	
Cu-D	10	10	0.90	TSM < Upper TV	Step 1	1.4	0.003	LOW	
Fe-D	10	10	5.5	TSM < Upper TV	Step 1	340	0.003	LOW	
Hg-D	10	10	0.05	TSM < Upper TV	Step 1	0.16	0.003	LOW	
Ni-D	10	10	0.50	TSM < Upper TV	Step 1	11	0.003	LOW	
Pb-D	10	10	0.10	TSM < Upper TV	Step 1	3.4	0.003	LOW	
Se-D	10	10	0.20	TSM < Upper TV	Step 1	11	0.003	LOW	
Zn-D	10	10	2.2	TSM < Upper TV	Step 1	8	0.003	LOW	

Table D-15 Water quality Lake Murray and ORWBs test sites - SG6 2015 median (μg/L)

	T	est Site		Initial Assessment		TV	Statistical Test	Risk Assessment	
SG6	N	N (Test)	Median	Result	Go to	1 V	Result (P=0.05)	HISK ASSESSMENT	
рН	4	4	6.6	Lower TV < TSM < Upper TV	Step 1 / 2	5.3-8.0	0.005 / 0.005	LOW	
TSS*	4	3	17	TSM < Upper TV	Step 1	23	0.605	LOW	
Ag-D	4	NA	0.05	TSM = TV	Step 3	0.05	NA	LOW	
As-D	4	4	0.92	TSM < Upper TV	Step 1	24	0.050	LOW	
Cd-D	4	4	0.05	TSM < Upper TV	Step 1	0.72	0.050	LOW	
Cr-D	4	4	0.12	TSM < Upper TV	Step 1	1	0.050	LOW	
Cu-D*	4	4	0.96	TSM < Upper TV	Step 1	1.4	0.101	LOW	
Fe-D	4	4	14	TSM < Upper TV	Step 1	340	0.050	LOW	
Hg-D	4	4	0.05	TSM < Upper TV	Step 1	0.16	0.050	LOW	
Ni-D	4	4	0.5	TSM < Upper TV	Step 1	11	0.050	LOW	
Pb-D	4	4	0.10	TSM < Upper TV	Step 1	3.4	0.050	LOW	
Se-D	4	4	0.20	TSM < Upper TV	Step 1	11	0.050	LOW	
Zn-D*	4	4	2.9	TSM < Upper TV	Step 1	8	0.101	LOW	

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table D-16 Water quality Lake Murray and ORWBs test sites - Kukufionga 2015 median (mg/kg)

	Te	est Site		Initial Assessmen	Initial Assessment		Statistical Test	Risk Assessment	
Kukufiong	N	N (Test)	Median	Result	Go to	TV	Result (P=0.05)	nisk Assessment	
рН						5.3-8.0			
TSS						23			
Ag-D						0.05			
As-D						24			
Cd-D						0.72		No data collected in 2015 therefore	
Cr-D						1			
Cu-D						2.5		Wilcoxon for risk	
Fe-D						340		assessment not	
Hg-D						0.16		performed	
Ni-D						11			
Pb-D						3.4			
Se-D						11			
Zn-D						8			

Table D-17 Water quality Lake Murray and ORWBs test sites - Zongamange 2015 median (mg/kg)

	Te	st Site		Initial Assessment		TV	Statistical Test	Risk Assessment
Zongamange	N	N (Test)	Median	Result	Go to	'V	Result (P=0.05)	nisk Assessment
рН						5.3-8.0		
TSS						23		
Ag-D						0.05		
As-D						24		
Cd-D						0.72		No data collected in
Cr-D						1		2015 therefore
Cu-D						2.5		Wilcoxon for risk
Fe-D						340		assessment not
Hg-D						0.16		performed
Ni-D						11		
Pb-D						3.4		
Se-D						11		
Zn-D						8		

Table D-18 Water quality Lake Murray and ORWBs test sites - Avu 2015 median (mg/kg)

	Test	Site		Initial Assessmen	t	TV	Statistical Test	Risk Assessment	
Avu	N	N (Test)	Median	Result	Go to	'V	Result (P=0.05)	HISK ASSESSMENT	
pH*	2	2	6.9	Lower TV < TSM < Upper TV	Step 1 / 2	5.3-8.0	0.186 / 0.186	LOW	
TSS	2	2	62	TSM > TV	Step 2	23	0.186	POTENTIAL	
Ag-D*	2	0	0.05	TSM = TV	Step 3	0.05	NA	LOW	
As-D*	2	2	3.4	TSM < TV	Step 1	24	0.186	LOW	
Cd-D*	2	2	0.05	TSM < TV	Step 1	0.72	0.186	LOW	
Cr-D*	2	2	0.16	TSM < TV	Step 1	1	0.186	LOW	
Cu-D*	2	2	1.1	TSM < TV	Step 1	1.4	0.184	LOW	
Fe-D*	2	2	103	TSM < TV	Step 1	340	0.186	LOW	
Hg-D*	2	2	0.06	TSM < TV	Step 1	0.16	0.186	LOW	
Ni-D*	2	2	0.88	TSM < TV	Step 1	11	0.186	LOW	
Pb-D*	2	2	0.38	TSM < TV	Step 1	3.4	0.186	LOW	
Se-D*	2	2	0.20	TSM < TV	Step 1	11	0.186	LOW	
Zn-D*	2	2	2.4	TSM < TV	Step 1	8	0.186	LOW	

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

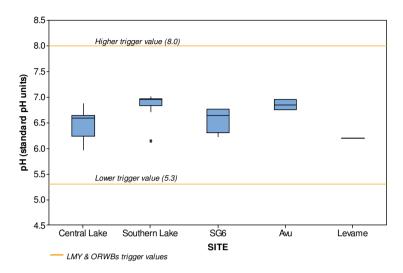


Figure D-29 pH in water Lake Murray and ORWBs test sites 2015

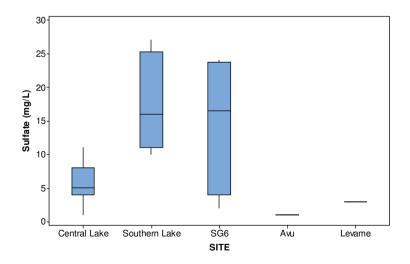


Figure D-31 Sulfate in water Lake Murray and ORWBs test sites 2015

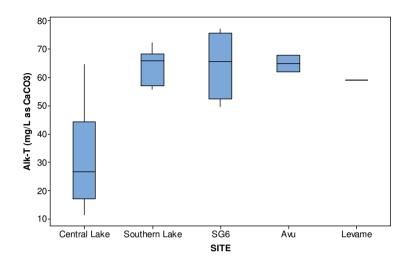


Figure D-30 Alkalinity in water Lake Murray and ORWBs test sites 2015

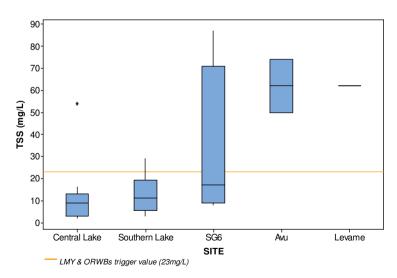


Figure D-32 TSS in water Lake Murray and ORWBs test sites 2015

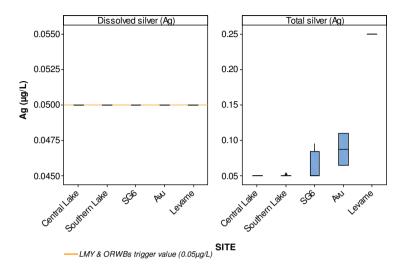


Figure D-33 Silver in water Lake Murray and ORWBs test sites 2015

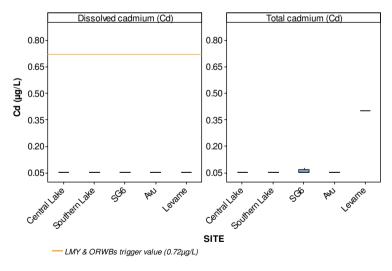


Figure D-35 Cadmium in water Lake Murray and ORWBs test sites 2015

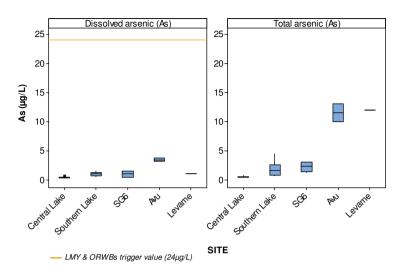


Figure D-34 As in water Lake Murray and ORWBs test sites 2015

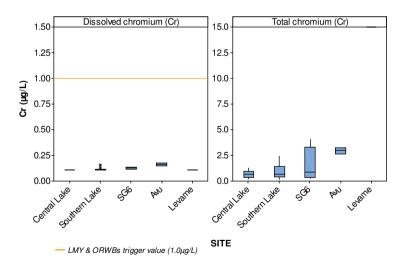


Figure D-36 Cr in water Lake Murray and ORWBs test sites 2015

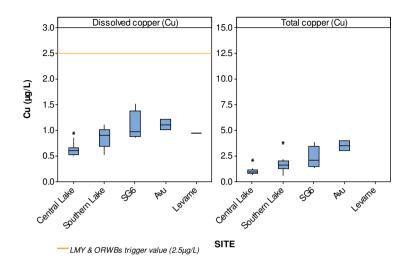


Figure D-37 Copper in water Lake Murray and ORWBs test sites 2015

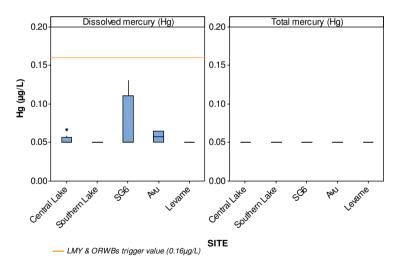


Figure D-39 Mercury in water Lake Murray and ORWBs test sites 2015

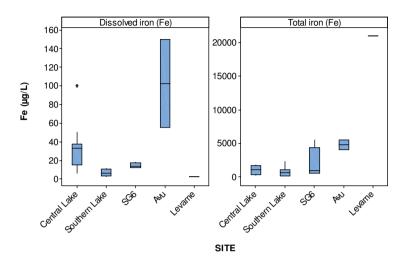


Figure D-38 Iron in water Lake Murray and ORWBs test sites 2015

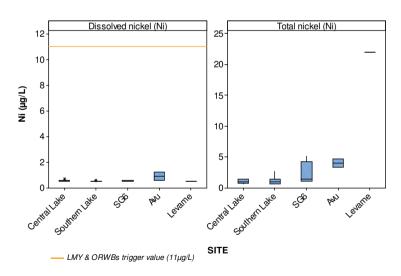


Figure D-40 Nickel in water Lake Murray and ORWBs test sites 2015

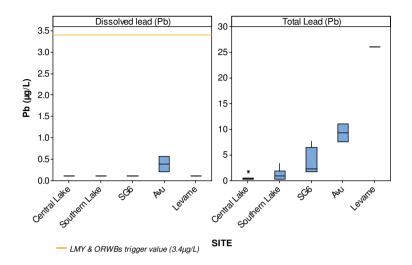


Figure D-41 Lead in water Lake Murray and ORWBs test sites 2015

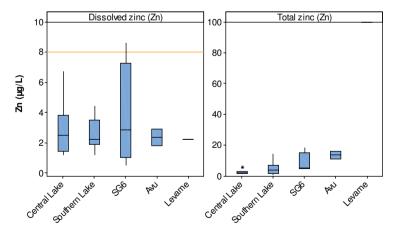


Figure D-43 Zinc in water Lake Murray and ORWBs test sites 2015

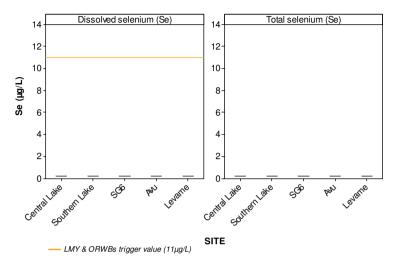


Figure D-42 Selenium in water Lake Murray and ORWBs test sites 2015

Table D-19 Performance assessment – Based on the trend of the annual median of water quality indicators at Lake Murray and ORWBs test sites relative to the trend of the annual median of water quality indicators at Lake Murray and ORWBs reference sites throughout the history of the operation using Spearman Rank Test.

Water Quality	D	Spearma	P-Value	T 1 0044 0045
Site	Parameter	n's rho	(P=0.05)	Trend 2011 - 2015
	рН	0.310	0.123	No change over time
	TSS	0.570	0.006	Increasing over time
	Ag-D	-0.735	<0.001	Reducing over time
	As-D	-0.078	0.707	No change over time
	Cd-D	-0.735	<0.001	Reducing over time
Central Lake	Cr-D	-0.934	<0.001	Reducing over time
(Trend of Annual Medians	Cu-D	-0.121	0.556	No change over time
from 2011 - 2015)	Fe-D	-0.897	<0.001	Reducing over time
, , ,	Hg-D	-0.632	<0.001	Reducing over time
	Ni-D	-0.354	0.076	No change over time
	Pb-D	-0.735	<0.001	Reducing over time
	Se-D	-0.690	<0.001	Reducing over time
	Zn-D	0.166	0.418	No change over time
	рН	-0.162	0.331	No change over time
	TSS	0.436	0.018	Increasing over time
	Ag-D	-0.889	<0.001	Reducing over time
	As-D	-0.235	0.156	No change over time
	Cd-D	-0.889	<0.001	Reducing over time
Southern Lake	Cr-D	-0.843	<0.001	Reducing over time
(Trend of Annual Medians	Cu-D	-0.506	<0.001	Reducing over time
from 2011 - 2015)	Fe-D	-0.775	<0.001	Reducing over time
,	Hg-D	-0.889	<0.001	Reducing over time
	Ni-D	-0.820	<0.001	Reducing over time
	Pb-D	-0.889	<0.001	Reducing over time
	Se-D	-0.850	<0.001	Reducing over time
	Zn-D	-0.123	0.462	No change over time
	рН	0.379	0.163	No change over time
	TSS	0.353	0.216	No change over time
	Ag-D	-0.746	<0.001	Reducing over time
	As-D	-0.067	0.799	No change over time
	Cd-D	-0.746	<0.001	Reducing over time
SG6	Cr-D	-0.431	0.084	No change over time
(Trend of Annual Medians	Cu-D	0.006	0.981	No change over time
from 2011 - 2015)	Fe-D	-0.887	<0.001	Reducing over time
,	Hg-D	-0.419	0.094	No change over time
	Ni-D	-0.536	0.027	Reducing over time
	Pb-D	-0.746	<0.001	Reducing over time
	Se-D	-0.522	0.046	Reducing over time
	Zn-D	-0.022	0.933	No change over time

Water Quality	Parameter	Spearma	P-Value	Trend 2011 - 2015
Site		n's rho	(P=0.05)	
Kukufionga (Trend of Annual Medians from 2011 - 2015)	All			Spearman rho and p values only cover 2011-2014. Nil data collected in 2015
Zongamange (Trend of Annual Medians from 2011 - 2015)	All			and to perform spearman will only result in introduction of bias.
	рН	0.160	0.603	No change over time
	TSS	0.584	0.046	Increasing over time
	Ag-D	-0.828	<0.001	Reducing over time
	As-D	-0.006	0.982	No change over time
	Cd-D	-0.828	<0.001	Reducing over time
Avu	Cr-D	-0.450	0.092	No change over time
(Trend of Annual Medians	Cu-D	-0.081	0.775	No change over time
from 2011 - 2015)	Fe-D	-0.516	0.049	Reducing over time
,	Hg-D	-0.084	0.767	No change over time
	Ni-D	-0.191	0.495	No change over time
	Pb-D	-0.162	0.565	No change over time
	Se-D	-0.628	0.022	Reducing over time
	Zn-D	0.036	0.897	No change over time

Insufficient data – Insufficient number of data points within the historical data set to support trend analysis.

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

APPENDIX E. SEDIMENT QUALITY – RISK AND PERFORMANCE
ASSESSMENT – DETAILS OF STATISTICAL ANALYSIS AND
BOX PLOTS

Table E-1 Expanded risk matrix – sediment quality

Initial A	Go То				
TSM < 1	Step 1				
TSM ≥ T	Step 2				
TSM = 7	Step 3				
Step	Alt Hypothesis	Null Hypothesis	Sig Test Re	esult	Risk Assessment
1	TSM < TV	TSM = TV	P < 0.05	Accept Alt	LOW
			P > 0.05	Accept Null	POTENTIAL
			Error	Accept Neither	ND
2	TSM ≥ TV and TV,	POTENTIAL			
3	TSM = TV and TV,	LOW			

TSM = Test Site Median

ND = No determination

Table E-2 Sediment quality upper river test sites - SG1 2015 median (WAE whole sediment mg/kg)

Test Site				Initial Assessment			Statistical Test Result	
SG1	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment
Ag-WAE*	6	6	0.50	TSM < Upper TV	Step 1	1.0	NA	LOW
As-WAE*	6	6	5.5	TSM < Upper TV	Step 1	20	NA	LOW
Cd-WAE*	6	6	0.82	TSM < Upper TV	Step 1	1.5	NA	LOW
Cr-WAE*	6	6	3.8	TSM < Upper TV	Step 1	80	NA	LOW
Cu-WAE*	6	6	6.3	TSM < Upper TV	Step 1	65	NA	LOW
Hg-WAE*	6	6	0.01	TSM < Upper TV	Step 1	0.15	NA	LOW
Ni-WAE*	6	6	5.1	TSM < Upper TV	Step 1	27	NA	LOW
Pb-WAE*	6	NA	125	TSM > Upper TV	Step 2	50	NA	POTENTIAL
Se-WAE*	6	NA	0.50	TSM = Upper TV	Step 3	0.50	NA	LOW
Zn-WAE*	6	6	114	TSM < Upper TV	Step 1	200	NA	LOW

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table E-3 Sediment quality upper river test sites - SG2 2015 median (WAE whole sediment mg/kg)

Test Site				Initial Assessment			Statistical Test Result	
SG2	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment
Ag-WAE	12	12	0.50	TSM < Upper TV	Step 1	1.0	<0.001	LOW
As-WAE	12	12	6.9	TSM < Upper TV	Step 1	20	0.001	LOW
Cd-WAE	12	10	0.90	TSM < Upper TV	Step 1	1.5	0.003	LOW
Cr-WAE	12	12	5.9	TSM < Upper TV	Step 1	80	0.001	LOW
Cu-WAE	12	12	14	TSM < Upper TV	Step 1	65	0.001	LOW
Hg-WAE	12	12	0.02	TSM < Upper TV	Step 1	0.15	0.001	LOW
Ni-WAE	12	12	6.7	TSM < Upper TV	Step 1	27	0.001	LOW
Pb-WAE	12	NA	71	TSM > Upper TV	Step 2	50	NA	POTENTIAL
Se-WAE	12	NA	0.50	TSM = Upper TV	Step 3	0.50	NA	LOW
Zn-WAE	12	10	130	TSM < Upper TV	Step 1	200	0.010	LOW

Table E-4 Sediment quality upper river test sites - Wasiba 2015 median (WAE whole sediment mg/kg)

	Te	st Site		Initial Assessment		TV	Statistical Test Result	Risk Assessment
Wankipe	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	HISK ASSESSMENT
Ag-WAE	15	15	0.50	TSM < Upper TV	Step 1	1.0	<0.001	LOW
As-WAE	15	15	6.3	TSM < Upper TV	Step 1	20	<0.001	LOW
Cd-WAE	15	14	0.71	TSM < Upper TV	Step 1	1.5	0.001	LOW
Cr-WAE	15	15	4.0	TSM < Upper TV	Step 1	80	0.001	LOW
Cu-WAE	15	15	10	TSM < Upper TV	Step 1	65	0.001	LOW
Hg-WAE	15	15	0.01	TSM < Upper TV	Step 1	0.15	<0.001	LOW
Ni-WAE	15	15	12	TSM < Upper TV	Step 1	27	<0.001	LOW
Pb-WAE	15	NA	54	TSM > Upper TV	Step 2	50	NA	POTENTIAL
Se-WAE	15	NA	0.50	TSM = Upper TV	Step 3	0.5	NA	LOW
Zn-WAE	15	13	81	TSM < Upper TV	Step 1	200	0.006	LOW

NA – Wilcoxon not run.

Table E-5 Sediment quality upper river test sites - Wankipe 2015 median (WAE whole sediment mg/kg)

	Te	st Site		Initial Assessment			Statistical Test Result	Risk Assessment
Wankipe	N	N (Test)	Median	Result Go to TV		(P=0.05)	HISK ASSESSMENT	
Ag-WAE	15	15	0.50	TSM < Upper TV	Step 1	1.0	<0.001	LOW
As-WAE	15	15	6.0	TSM < Upper TV	Step 1	20	<0.001	LOW
Cd-WAE	15	15	0.59	TSM < Upper TV	Step 1	1.5	0.001	LOW
Cr-WAE	15	15	3.8	TSM < Upper TV	Step 1	80	<0.001	LOW
Cu-WAE	15	15	10	TSM < Upper TV	Step 1	65	<0.001	LOW
Hg-WAE	15	15	0.01	TSM < Upper TV	Step 1	0.15	<0.001	LOW
Ni-WAE	15	15	8.4	TSM < Upper TV	Step 1	27	0.001	LOW
Pb-WAE	15	15	44	TSM < Upper TV	Step 1	50	0.213	POTENTIAL
Se-WAE	15	NA	0.50	TSM = Upper TV	Step 3	0.5	NA	LOW
Zn-WAE	15	15	78	TSM < Upper TV	Step 1	200	0.007	LOW

Table E-6 Sediment quality upper river test sites - SG3 2015 median (WAE whole sediment mg/kg)

	Test Site			Initial Assessment	TV	Statistical Test Result	Risk Assessment		
SG3	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	HISK ASSESSMENT	
Ag-WAE	61	61	0.50	TSM < Upper TV	Step 1	1.0	<0.001	LOW	
As-WAE	61	61	4.8	TSM < Upper TV	Step 1	20	<0.001	LOW	
Cd-WAE	61	60	0.58	TSM < Upper TV	Step 1	1.5	<0.001	LOW	
Cr-WAE	61	61	3.2	TSM < Upper TV	Step 1	80	<0.001	LOW	
Cu-WAE	61	61	9.6	TSM < Upper TV	Step 1	65	<0.001	LOW	
Hg-WAE	61	61	0.01	TSM < Upper TV	Step 1	0.15	<0.001	LOW	
Ni-WAE	61	60	9.5	TSM < Upper TV	Step 1	27	<0.001	LOW	
Pb-WAE	61	61	28	TSM < Upper TV	Step 1	50	<0.001	LOW	
Se-WAE	61	NA	0.50	TSM = Upper TV	Step 3	0.5	NA	LOW	
Zn-WAE	61	60	70	TSM < Upper TV	Step 1	200	<0.001	LOW	

Table E-7 Sediment quality lower river test sites - Bebelubi 2015 median (WAE whole sediment mg/kg)

	Te	st Site		Initial Assessment	TV	Statistical Test Result	Risk Assessment		
Bebelubi	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	nisk Assessillelit	
Ag-WAE	6	6	0.50	TSM < Upper TV	Step 1	1.0	NA	LOW*	
As-WAE	6	6	3.4	TSM < Upper TV	Step 1	20	NA	LOW*	
Cd-WAE	6	6	0.50	TSM < Upper TV	Step 1	1.5	NA	LOW*	
Cr-WAE	6	6	6.2	TSM < Upper TV	Step 1	80	NA	LOW*	
Cu-WAE	6	6	6.5	TSM < Upper TV	Step 1	65	NA	LOW*	
Hg-WAE	6	6	0.01	TSM < Upper TV	Step 1	0.2	NA	LOW*	
Ni-WAE	6	6	18	TSM < Upper TV	Step 1	21	NA	LOW*	
Pb-WAE	6	6	13	TSM < Upper TV	Step 1	50	NA	LOW*	
Se-WAE	6	NA	0.50	TSM = Upper TV	Step 3	0.5	NA	LOW*	
Zn-WAE	6	6	44	TSM < Upper TV	Step 1	200	NA	LOW*	

^{*}Small sample size (N) therefore Wilcoxon (signed rank) does not have sufficient power to detect significance difference between medians, risk assessment is based on direct comparison.

Table E-8 Sediment quality lower river test sites - SG4/Tiumsinawam 2015 median (WAE whole sediment mg/kg)

	Tes	st Site		Initial Assessmen	t	T\/	Statistical Test Result	Diek Assessment	
Tium/SG4	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment	
Ag-WAE	8	8	0.50	TSM < Upper TV	Step 1	1.0	0.007	LOW	
As-WAE	8	8	2.3	TSM < Upper TV	Step 1	20	0.008	LOW	
Cd-WAE	8	8	0.50	TSM < Upper TV	Step 1	1.5	0.007	LOW	
Cr-WAE	8	8	3.8	TSM < Upper TV	Step 1	80	0.007	LOW	
Cu-WAE	8	8	6.4	TSM < Upper TV	Step 1	65	0.007	LOW	
Hg-WAE	8	8	0.01	TSM < Upper TV	Step 1	0.2	0.007	LOW	
Ni-WAE	8	8	9.0	TSM < Upper TV	Step 1	21	0.007	LOW	
Pb-WAE	8	8	9.4	TSM < Upper TV	Step 1	50	0.007	LOW	
Se-WAE	8	NA	0.50	TSM = Upper TV	Step 3	0.50	NA	LOW	
Zn-WAE	8	8	34	TSM < Upper TV	Step 1	200	0.007	LOW	

Table E-9 Sediment quality lower river test sites - SG5 2015 median (WAE whole sediment mg/kg)

	Tes	t Site		Initial Assessmen		TV	Statistical Test Result	Risk Assessment	
SG5	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	nisk Assessifietti	
Ag-WAE	8	8	0.50	TSM < Upper TV	Step 1	1.0	0.007	LOW	
As-WAE	8	8	4.2	TSM < Upper TV	Step 1	20	0.007	LOW	
Cd-WAE	8	8	0.50	TSM < Upper TV	Step 1	1.5	0.007	LOW	
Cr-WAE	8	8	21	TSM < Upper TV	Step 1	80	0.007	LOW	
Cu-WAE	8	8	13	TSM < Upper TV	Step 1	65	0.007	LOW	
Hg-WAE	8	8	0.01	TSM < Upper TV	Step 1	0.2	0.007	LOW	
Ni-WAE	8	NA	38	TSM > Upper TV	Step 2	21	NA	POTENTIAL	
Pb-WAE	8	8	19	TSM < Upper TV	Step 1	50	0.007	LOW	
Se-WAE	8	NA	0.50	TSM = Upper TV	Step 3	0.5	NA	LOW	
Zn-WAE	8	8	120	TSM < Upper TV	Step 1	200	0.007	LOW	

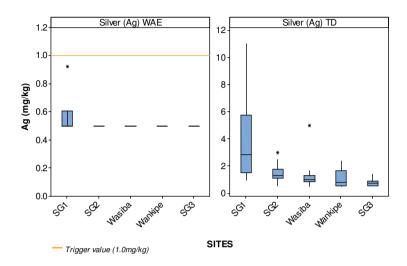


Figure E-1 Silver in sediment upper river test sites 2015

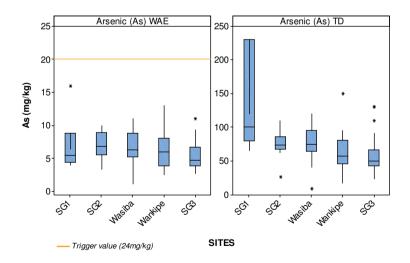


Figure E-3 Arsenic in sediment upper river test sites 2015

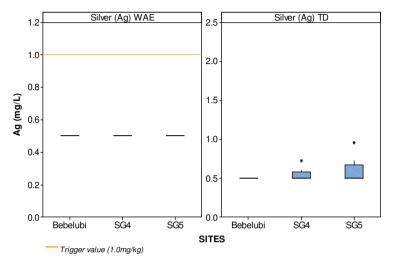


Figure E-2 Silver in sediment lower river test sites 2015

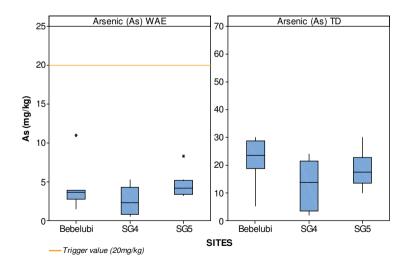


Figure E-4 Arsenic in sediment lower river test sites 2015

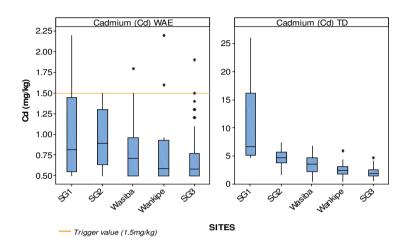


Figure E-5 Cadmium in sediment upper river test sites 2015

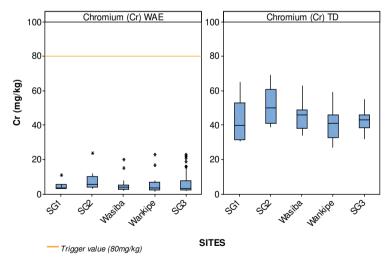


Figure E-7 Chromium in sediment upper river test sites 2015

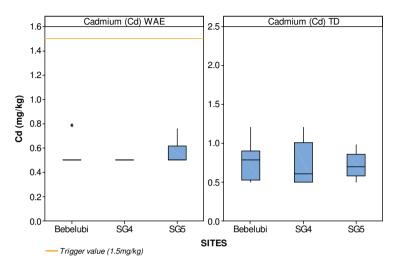


Figure E-6 Cadmium in sediment lower river test sites 2015

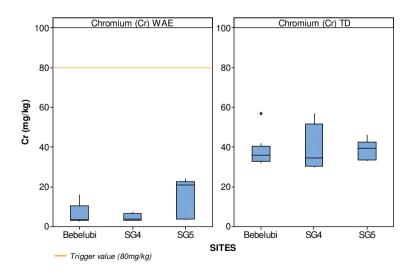


Figure E-8 Chromium in sediment lower river test sites 2015

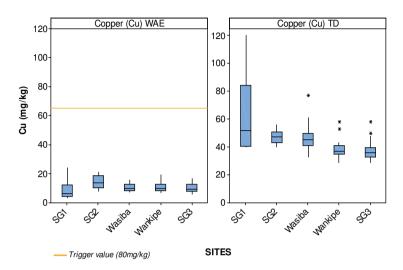


Figure E-9 Copper in sediment upper river test sites 2015

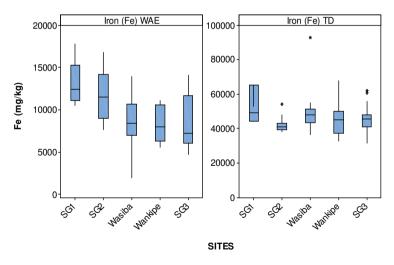


Figure E-11 Iron in sediment upper river test sites 2015

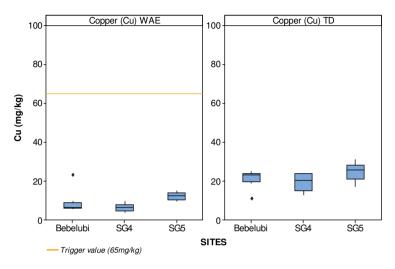


Figure E-10 Copper in sediment lower river test sites 2015

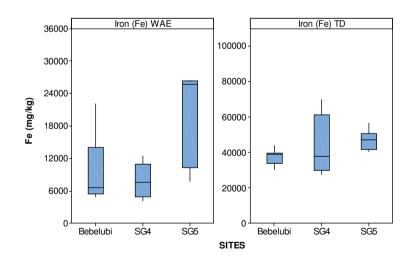


Figure E-12 Iron in sediment lower river test sites 2015

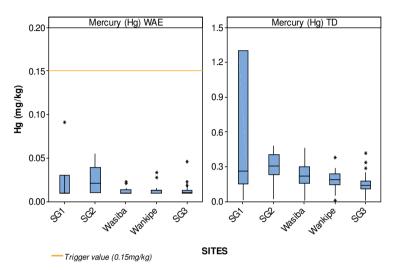


Figure E-13 Mercury in sediment upper river test sites 2015

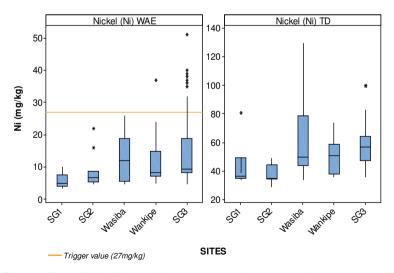


Figure E-15 Nickel in sediment upper river test sites 2015

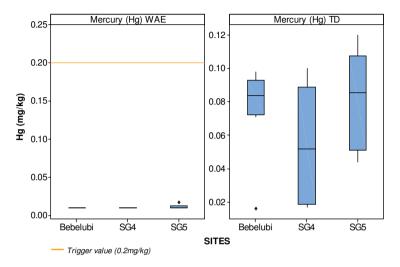


Figure E-14 Mercury in sediment lower river test sites 2015

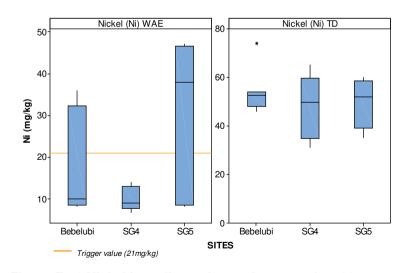


Figure E-16 Nickel in sediment lower river test sites 2015

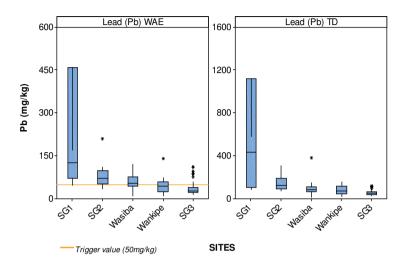


Figure E-17 Lead in sediment upper river test sites 2015

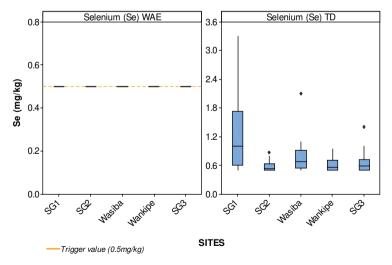


Figure E-19 Selenium in sediment upper river test sites 2015

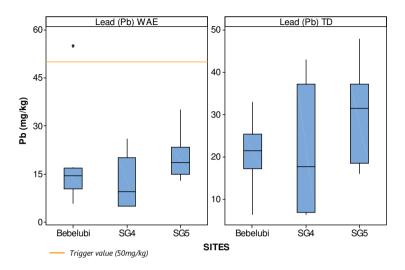


Figure E-18 Lead in sediment lower river test sites 2015

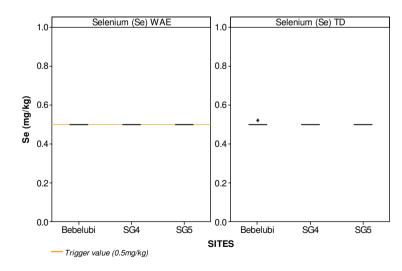


Figure E-20 Selenium in sediment lower river test sites 2015

Figure E-21 Zinc in sediment upper river test sites 2015

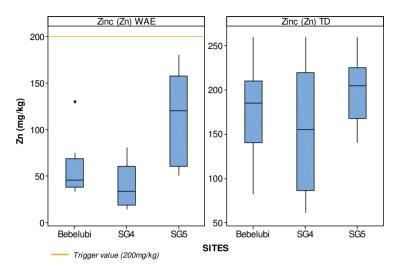


Figure E-22 Zinc in sediment lower river test sites 2015

Table E-10 Performance assessment – Based on the trend of the annual median of sediment quality indicators at upper river test sites relative to the trend of the annual median of water quality indicators at upper river reference sites throughout the history of the operation using Spearman Rank Test. (Total Digest whole sediment)

Sediment Quality		Spearman's	P-Value	
Site	Parameter	rho	(P=0.05)	Trend 2011 - 2015
	Ag-WAE	0.299	0.176	No change over time
	As-WAE	0.278	0.201	No change over time
	Cd-WAE	0.227	0.309	No change over time
SG1	Cr-WAE	0.520	0.012	Increased over time
	Cu-WAE	0.330	0.134	No change over time
(Trend of Annual	Hg-WAE	-0.564	0.009	Reduced over time
Medians 2011 - 2015)	Ni-WAE	0.491	0.020	Increased over time
	Pb-WAE	0.076	0.737	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.252	0.259	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.447	0.017	Increased over time
	Cd-WAE	0.332	0.085	No change over time
SG2	Cr-WAE	0.669	0.000	Increased over time
042	Cu-WAE	0.368	0.054	No change over time
(Trend of Annual	Hg-WAE	-0.116	0.558	No change over time
Medians 2011 - 2015)	Ni-WAE	0.461	0.014	Increased over time
	Pb-WAE	0.002	0.990	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.361	0.059	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.398	0.054	No change over time
	Cd-WAE	0.405	0.049	Increased over time
Wasiba	Cr-WAE	0.181	0.399	No change over time
Wadiba	Cu-WAE	0.318	0.130	No change over time
(Trend of Annual	Hg-WAE	0.237	0.265	No change over time
Medians 2011 - 2015)	Ni-WAE	0.087	0.686	No change over time
	Pb-WAE	0.056	0.795	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.261	0.217	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.567	0.001	Increased over time
	Cd-WAE	0.438	0.011	Increased over time
Wankipe	Cr-WAE	0.539	0.001	Increased over time
	Cu-WAE	0.652	0.000	Increased over time
(Trend of Annual	Hg-WAE	-0.090	0.619	No change over time
Medians 2011 - 2015)	Ni-WAE	0.161	0.370	No change over time
	Pb-WAE	0.304	0.086	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.454	0.008	Increased over time

Sediment Quality	Parameter	Spearman's	P-Value	Trend 2011 - 2015	
Site	Parameter	rho	(P=0.05)	11elia 2011 - 2015	
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time	
	As-WAE	0.757	0.000	Increased over time	
	Cd-WAE	0.545	0.000	Increased over time	
SG3	Cr-WAE	0.696	0.000	Increased over time	
	Cu-WAE	0.780	0.000	Increased over time	
(Trend of Annual	Hg-WAE	-0.108	0.188	No change over time	
Medians 2011 - 2015)	Ni-WAE	0.139	0.089	No change over time	
	Pb-WAE	0.546	0.000	Increased over time	
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time	
	Zn-WAE	0.659	0.000	Increased over time	

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table E-11 Performance assessment – Based on the trend of the annual median of sediment quality indicators at lower river test sites relative to the trend of the annual median of water quality indicators at lower river reference sites throughout the history of the operation using Spearman Rank Test. (Total Digest whole sediment)

Sediment Quality Site	Parameter	Spearman's rho	P-Value (P=0.05)	Trend 2013 - 2015
5.1.0	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.223	0.444	No change over time
	Cd-WAE	0.232	0.425	No change over time
Bebelubi	Cr-WAE	0.743	0.002	Increased over time
Depelubi	Cu-WAE	0.282	0.328	No change over time
(Trend of Annual	Hg-WAE	-0.464	0.095	No change over time
Medians 2013 - 2015)	Ni-WAE	0.260	0.369	No change over time
	Pb-WAE	-0.334	0.243	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.401	0.156	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.030	0.920	No change over time
	Cd-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Tiumsinawam	Cr-WAE	0.534	0.049	Increased over time
Transmarram	Cu-WAE	0.284	0.326	No change over time
(Trend of Annual	Hg-WAE	-0.523	0.055	No change over time
Medians 2013 - 2015)	Ni-WAE	-0.134	0.647	No change over time
	Pb-WAE	0.060	0.840	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.334	0.243	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.412	0.113	No change over time
	Cd-WAE	0.465	0.070	No change over time
SG5	Cr-WAE	0.372	0.156	No change over time
	Cu-WAE	0.688	0.003	Increased over time
(Trend of Annual	Hg-WAE	0.081	0.765	No change over time
Medians 2013 - 2015)	Ni-WAE	0.372	0.155	No change over time
	Pb-WAE	0.543	0.030	Increased over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.415	0.110	No change over time

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

Table E-12 Sediment quality Lake Murray and ORWBs test sites Central Lake 2015 median (mg/kg)

	Test	Site		Initial Assessment			Statistical Test Result	D'. I A
Central	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment
Ag-WAE	11	11	0.50	TSM < TV	Step 1	1.0	0.002	LOW
As-WAE	11	11	1.6	TSM < TV	Step 1	20	0.002	LOW
Cd-WAE	11	11	0.50	TSM < TV	Step 1	1.5	0.002	LOW
Cr-WAE	11	11	20	TSM < TV	Step 1	80	0.002	LOW
Cu-WAE	11	11	17	TSM < TV	Step 1	65	0.002	LOW
Hg-WAE	11	11	0.08	TSM < TV	Step 1	0.15	0.002	LOW
Ni-WAE	11	NA	24	TSM > TV	Step 2	21	NA	POTENTIAL
Pb-WAE	11	11	15	TSM < TV	Step 1	50	0.002	LOW
Se-WAE*	11	0	0.50	TSM = TV	Step 3	0.5	NA	LOW
Zn-WAE	11	11	86	TSM < TV	Step 1	200	0.002	LOW

Table E-13 Sediment quality Lake Murray and ORWBs test sites South Lake 2015 median (mg/kg)

	Test Site				Initial Assessment		Statistical Test Result	Risk Assessment
Southern	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	nisk Assessillelit
Ag-WAE	10	10	0.50	TSM < TV	Step 1	1.0	0.003	LOW
As-WAE	10	10	4.7	TSM < TV	Step 1	20	0.003	LOW
Cd-WAE	10	10	0.50	TSM < TV	Step 1	1.5	0.003	LOW
Cr-WAE	10	10	22	TSM < TV	Step 1	80	0.003	LOW
Cu-WAE	10	10	22	TSM < TV	Step 1	65	0.003	LOW
Hg-WAE	10	10	0.06	TSM < TV	Step 1	0.15	0.003	LOW
Ni-WAE	10	NA	30	TSM > TV	Step 2	21	NA	POTENTIAL
Pb-WAE	10	10	30	TSM < TV	Step 1	50	0.026	LOW
Se-WAE	10	NA	0.50	TSM = TV	Step 3	0.50	NA	LOW
Zn-WAE	10	10	110	TSM < TV	Step 1	200	0.003	LOW

Table E-14 Sediment quality Lake Murray and ORWBs test sites SG6 2015 median (mg/kg)

	Test Site				Initial Assessment		Statistical Test Result	Risk Assessment
SG6	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	nisk Assessifietit
Ag-WAE	4	4	0.50	TSM < TV	Step 1	1.0	0.050	LOW
As-WAE	4	4	8.8	TSM < TV	Step 1	20	0.050	LOW
Cd-WAE	4	4	0.50	TSM < TV	Step 1	1.5	0.050	LOW
Cr-WAE	4	4	21	TSM < TV	Step 1	80	0.050	LOW
Cu-WAE	4	4	22	TSM < TV	Step 1	65	0.050	LOW
Hg-WAE	4	4	0.02	TSM < TV	Step 1	0.15	0.050	LOW
Ni-WAE	4	NA	32	TSM > TV	Step 2	21	NA	POTENTIAL
Pb-WAE	4	4	33	TSM < TV	Step 1	50	0.050	LOW
Se-WAE	4	0	0.50	TSM = TV	Step 3	0.50	NA	LOW
Zn-WAE	4	4	120	TSM < TV	Step 1	200	0.050	LOW

Table E-15 Sediment quality Lake Murray and ORWBs test sites Kukufionga 2015 median (mg/kg)

	Test	Site		Initial Assessment		TV	Statistical Test Result	Risk Assessment	
Kukufionga	N	N (Test)	Median	Result	Go to] IV	(P=0.05)	nisk Assessillelit	
Ag-WAE	0								
As-WAE	0								
Cd-WAE	0								
Cr-WAE	0							No data collected in	
Cu-WAE	0							2015 therefore Wilcoxon for risk	
Hg-WAE	0							assessment not	
Ni-WAE	0							performed	
Pb-WAE	0								
Se-WAE	0								
Zn-WAE	0								

Table E-16 Sediment quality Lake Murray and ORWBs test sites Zongamange 2015 median (mg/kg)

	Test	Site		Initial Assessment		TV	Statistical Test Result	Risk Assessment	
Zongamange	N	N (Test)	Median	Result	Go to] IV	(P=0.05)	hisk Assessment	
Ag-WAE	0								
As-WAE	0								
Cd-WAE	0								
Cr-WAE	0							No data collected in	
Cu-WAE	0							2015 therefore Wilcoxon for risk	
Hg-WAE	0							assessment not	
Ni-WAE	0							performed	
Pb-WAE	0								
Se-WAE	0								
Zn-WAE	0								

Table E-17 Sediment quality Lake Murray and ORWBs test sites Avu 2015 median (mg/kg)

	Test Site		Initial Asses	ssment	TV	Statistical Test Result	Risk Assessment		
Avu	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	nisk Assessillelit	
Ag-WAE	2	2	0.50	TSM < TV	Step 1	1.0	0.186	LOW	
As-WAE	2	2	9.7	TSM < TV	Step 1	20	0.187	LOW	
Cd-WAE	2	2	0.62	TSM < TV	Step 1	1.5	0.186	LOW	
Cr-WAE	2	2	21	TSM < TV	Step 1	80	0.186	LOW	
Cu-WAE	2	2	24	TSM < TV	Step 1	65	0.186	LOW	
Hg-WAE	2	2	0.02	TSM < TV	Step 1	0.15	0.186	LOW	
Ni-WAE	2	NA	34	TSM > TV	Step 2	21	NA	POTENTIAL	
Pb-WAE	2	NA	62	TSM > TV	Step 2	50	NA	POTENTIAL	
Se-WAE*	2	0	0.5	TSM = TV	Step 3	0.5	NA	LOW	
Zn-WAE	2	2	170	TSM < TV	Step 1	200	0.186	LOW	

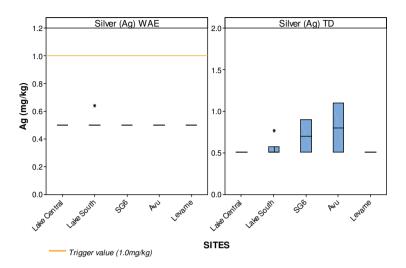


Figure E-23 Silver in sediment LMY and ORWB test sites 2015

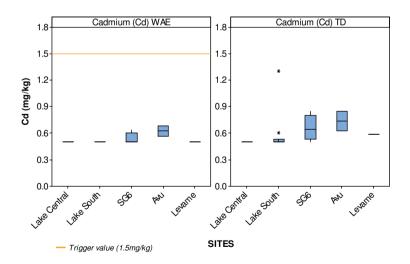


Figure E-25 Cadmium in sediment LMY and ORWB test sites 2015

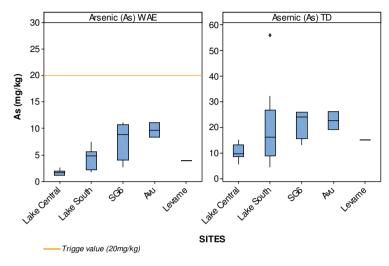


Figure E-24 Arsenic in sediment LMY and ORWB test sites 2015

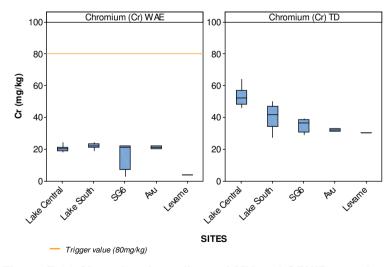


Figure E-26 Chromium in sediment LMY and ORWB test sites 2015

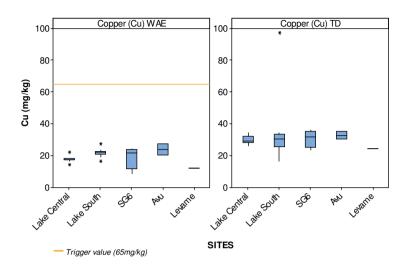


Figure E-27 Copper in sediment LMY and ORWB test sites 2015

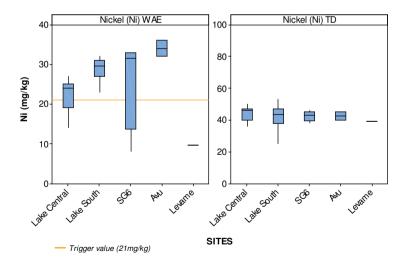


Figure E-29 Nickel in sediment LMY and ORWB test sites 2015

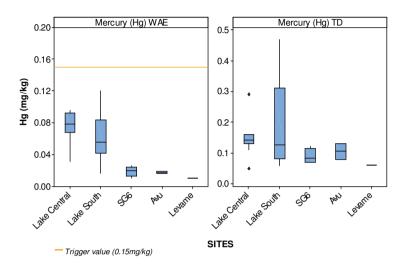


Figure E-28 Mercury in sediment LMY and ORWB test sites 2015

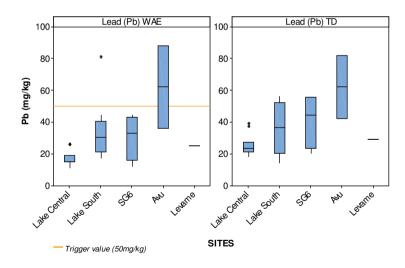


Figure E-30 Lead in sediment LMY and ORWB test sites 2015

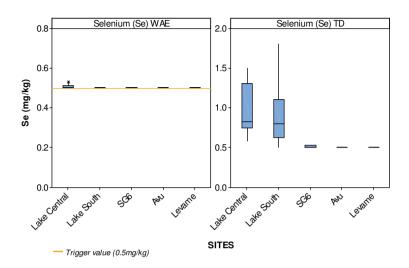


Figure E-31 Selenium in sediment LMY and ORWB test sites 2015

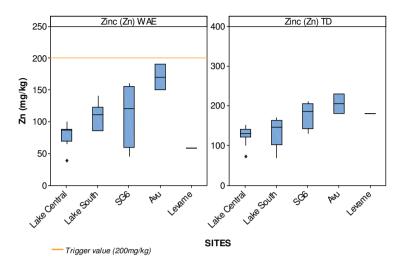


Figure E-32 Zinc in sediment LMY and ORWB test sites 2015

Table E-18 Performance assessment – Based on the trend of the annual median of sediment quality indicators at Lake Murray and ORWBs test sites relative to the trend of the annual median of water quality indicators at Lake Murray and ORWBs reference sites throughout the history of the operation using Spearman Rank Test. (Total Digest whole sediment)

Sediment Quality	D	Spearman's	D. VI (D. 0.05)	T
Site	Parameter	rho	P-Value (P=0.05)	Trend 2013 – 2014/2015
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.465	0.022	Increased over time
	Cd-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Central Lake	Cr-WAE	0.913	0.000	Increased over time
	Cu-WAE	0.914	0.000	Increased over time
(Trend of Annual	Hg-WAE	0.130	0.543	No change over time
Medians 2013 - 2015)	Ni-WAE	0.918	0.000	Increased over time
	Pb-WAE	0.829	0.000	Increased over time
	Se-WAE	0.388	0.061	No change over time
	Zn-WAE	0.795	0.000	Increased over time
	Ag-WAE	0.226	0.235	No change over time
	As-WAE	0.556	0.002	Increased over time
	Cd-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Southern Lake	Cr-WAE	0.944	0.000	Increased over time
	Cu-WAE	0.894	0.000	Increased over time
(Trend of Annual	Hg-WAE	-0.470	0.010	Reduced over time
Medians 2013 - 2015)	Ni-WAE	0.939	0.000	Increased over time
	Pb-WAE	0.353	0.061	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.856	0.000	Increased over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.266	0.338	No change over time
	Cd-WAE	0.410	0.129	No change over time
SG6	Cr-WAE	0.529	0.043	Increased over time
0.0	Cu-WAE	0.400	0.140	No change over time
(Trend of Annual	Hg-WAE	0.115	0.684	No change over time
Medians 2013 - 2015)	Ni-WAE	0.531	0.042	Increased over time
	Pb-WAE	0.135	0.631	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.494	0.061	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.375	0.094	No change over time
	Cd-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cr-WAE	0.370	0.098	No change over time
Kukufionga	Cu-WAE	0.377	0.092	No change over time
	Hg-WAE	-1.00	*	No change over time
(Trend of Annual	Ni-WAE	0.380	0.090	No change over time
Medians 2013 - 2014)	Pb-WAE	0.370	0.098	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.375	0.094	No change over time

Sediment Quality	Parameter	Spearman's	P-Value (P=0.05)	Trend 2013 – 2014/2015
Site	Farameter	rho	r-value (r=0.03)	11elia 2013 – 2014/2013
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.436	0.104	No change over time
	Cd-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Zongamange	Cr-WAE	0.436	0.104	No change over time
	Cu-WAE	0.456	0.088	No change over time
(Trend of Annual	Hg-WAE	-0.452	0.090	No change over time
Medians 2013 - 2014)	Ni-WAE	0.449	0.093	No change over time
	Pb-WAE	0.452	0.090	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.446	0.096	No change over time
	Ag-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	As-WAE	0.520	0.032	Increased over time
	Cd-WAE	0.684	0.002	Increased over time
Avu	Cr-WAE	0.674	0.003	Increased over time
1	Cu-WAE	0.405	0.107	No change over time
(Trend of Annual	Hg-WAE	-0.285	0.267	No change over time
Medians 2013 - 2014)	Ni-WAE	0.707	0.002	Increased over time
	Pb-WAE	0.430	0.085	No change over time
	Se-WAE	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn-WAE	0.667	0.003	Increased over time

LOR = Analytical Limit of Reporting

^{*} The trend indicated by Spearman's rho and p of these tests are artefacts of a change (either upwards or downwards) of the analytical limit of reporting throughout the historical record and are not representative of an actual positive or negative trend. Therefore the finding has been corrected to indicate no change over time, which is representative of actual conditions.

APPENDIX F. TISSUE METAL – RISK AND PERFORMANCE ASSESSMENT – DETAILS OF STATISTICAL ANALYSIS & BOX PLOTS

PJV Annual Environment Report 2015

Table F-1 Expanded risk matrix – tissue metal

Initial A	ssessment Result				Go To			
TSM < T	TV .		Step 1					
TSM ≥ T	V and TV, TSM and	Step 2						
TSM = T	TSM = TV and TV, TSM and full TSM data set ≤ LOR							
Step	Alt Hypothesis	Null Hypothesis	Sig Test R	esult	Risk Assessment			
			P < 0.05	Accept Alt	LOW			
1	TSM < TV	TSM = TV	P > 0.05	Accept Null	POTENTIAL			
			Error	Accept Neither	ND			
2	TSM ≥ TV and TV,	LOR	POTENTIAL					
3	TSM = TV and TV,	TSM and full TSM da	ata set are ≤	LOR	LOW			

TSM = Test Site Median

ND = No determination

Table F-2 Tissue metal fish flesh upper river test sites 2015 median (mg/kg)

	Test S	Site		Initial Ass	sessment	TV	Statistical Test Result	Risk Assessment	
Wasiba	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	HISK ASSESSMENT	
As	22	22	0.03	<	Step 1	0.20	<0.001	LOW	
Cd	22	22	0.003	<	Step 1	0.02	<0.001	LOW	
Cr	22	20	0.01	<	Step 1	0.02	0.041	LOW	
Cu	22	22	0.15	<	Step 1	0.48	<0.001	LOW	
Hg	22	21	0.08	<	Step 1	0.09	0.049	LOW	
Ni	22	22	0.01	<	Step 1	0.10	<0.001	LOW	
Pb	22	22	0.01	<	Step 1	0.17	<0.001	LOW	
Se	22	22	0.32	<	Step 1	2.26	<0.001	LOW	
Zn	22	22	4.2	<	Step 1	6.9	<0.001	LOW	
	Test S	Site		Initial Ass	sessment	TV	Statistical Test Result	Risk Assessment	
Wankipe	N	N (Test)	Median	Result	Go to	1 4	(P=0.05)	nisk Assessment	
As	20	20	0.02	<	Step 1	0.20	<0.001	LOW	
Cd	20	20	0.003	<	Step 1	0.02	<0.001	LOW	
Cr	20	18	0.01	<	Step 1	0.02	0.035	LOW	
Cu	20	20	0.15	<	Step 1	0.48	<0.001	LOW	
Hg	20	18	0.06	<	Step 1	0.09	<0.001	LOW	
Ni	20	20	0.01	<	Step 1	0.10	<0.001	LOW	
Pb	20	20	0.01	<	Step 1	0.17	<0.001	LOW	
Se	20	20	0.27	<	Step 1	2.26	<0.001	LOW	
Zn	20	20	3.65	<	Step 1	6.9	<0.001	LOW	

Table F-3 Tissue metal prawn abdomen upper river test sites 2015 median (mg/kg)

	Test S	Site		Initial As	sessment	TV	Statistical Test Result	Diek Assessment	
Wasiba	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment	
As	26	26	0.04	<	Step 1	0.06	<0.001	LOW	
Cd	26	25	0.05	>	Step 2	0.01	<0.001	POTENTIAL	
Cr	26	26	0.02	<	Step 1	0.11	<0.001	LOW	
Cu	26	26	6.7	<	Step 1	9.82	<0.001	LOW	
Hg*	26	1	0.01	=	Step 3	0.01	1.000	LOW	
Ni	26	19	0.01	<	Step 1	0.02	0.014	LOW	
Pb	26	16	0.02	>	Step 2	0.01	0.029	POTENTIAL	
Se	26	26	0.57	>	Step 2	0.43	1.000	POTENTIAL	
Zn	26	23	15.5	<	Step 1	16	0.210	POTENTIAL	
	Test S	Site		Initial Ass	sessment	- TV	Statistical Test Result	Risk Assessment	
Wankipe	N	N (Test)	Median	Result	Go to	1 4	(P=0.05)		
As	26	23	0.04	~	Step 1	0.06	0.015	LOW	
Cd	26	26	0.01	II	Step 3	0.01	0.374	POTENTIAL	
Cr	26	26	0.02	<	Step 1	0.11	<0.001	LOW	
Cu	26	26	5.6	<	Step 1	9.82	<0.001	LOW	
Hg*	26	0	0.01	=	Step 3	0.01	-	LOW	
Ni	26	18	0.02	=	Step 3	0.02	0.486	POTENTIAL	
Pb	26	9	0.01	=	Step 3	0.01	0.009	POTENTIAL	
Se	26	25	0.38	<	Step 1	0.43	0.002	LOW	
Zn	26	24	13	<	Step 1	16	<0.001	LOW	

^{*} Wilcoxon's test returns an error when all test and reference data are equal, which usually occurs when all results are < the analytical limit of reporting. So although the result is not statistically significant the TSM is considered = TV.

Table F-4 Tissue metal fish flesh lower river test sites 2015 median (mg/kg)

	Test	Site		Initial As	ssessment	TV	Statistical Test Result	Diek Assessment	
Bebelubi	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment	
As	0					0.07			
Cd	0					0.01			
Cr	0					0.03			
Cu	0					0.17			
Hg	0					0.12			
Ni	0					0.17			
Pb	0					0.03			
Se	0					2.36			
Zn	0					4.78			
	Test	Site		Initial As	ssessment	- TV	Statistical Test Result	Risk Assessment	
Tiumsinawam	N	N (Test)	Median	Result	Go to	1 V	(P=0.05)	nisk Assessment	
As	18	18	0.01	<	Step 1	0.07	<0.001	LOW	
Cd	18	18	0.003	'	Step1	0.01	0.003	LOW	
Cr	18	18	0.01	'	Step1	0.03	0.019	LOW	
Cu	18	17	0.09	<	Step1	0.17	<0.001	LOW	
Hg	18	18	0.09	<	Step1	0.12	0.021	LOW	
Ni	18	18	0.01	<	Step1	0.03	<0.001	LOW	
Pb	18	18	0.01	<	Step1	0.17	<0.001	LOW	
Se	18	18	0.16	<	Step1	2.26	<0.001	LOW	
Zn	18	18	3.55	<	Step1	4.78	0.007	LOW	

^{*} Wilcoxon's test returns error when all test and reference data are equal, which occurs when all results are < the analytical limit of reporting. So although the result is not statistically significant the TSM is considered = TV.

Table F-5 Bioaccumulation prawn abdomen lower river test sites 2015 median (mg/kg)

	Test	Site		Initial As	ssessment	TV	Statistical Test Result	Diek Assessment	
Bebelubi	N	N (Test)	Median	Result	Go to	TV	(P=0.05)	Risk Assessment	
As	16	15	0.12	>	Step 2	0.10	0.005	POTENTIAL	
Cd	16	16	0.01	II	Step 3	0.01	0.003	POTENTIAL	
Cr	16	16	0.02	'	Step 1	0.06	<0.001	LOW	
Cu	16	16	8.5	'	Step 1	11.6	<0.001	LOW	
Hg*	16	0	0.01	II	Step 3	0.01	-	LOW	
Ni	16	7	0.01	II	Step 3	0.01	0.022	POTENTIAL	
Pb	16	0	0.01	=	Step 3	0.01	-	LOW	
Se	16	16	0.33	>	Step 2	0.31	0.211	POTENTIAL	
Zn	16	11	16	II	Step 1	16	0.038	POTENTIAL	
	Test	Site		Initial As	ssessment	TV	Statistical Test Result	Risk Assessment	
Tiumsinawam	N	N (Test)	Median	Result	Go to	1 4	(P=0.05)	HISK ASSESSIIICH	
As	26	23	0.07	<	Step 1	0.10	0.001	LOW	
Cd	26	22	0.01	=	Step 3	0.01	0.770	POTENTIAL	
Cr	26	26	0.02	<	Step 1	0.06	<0.001	LOW	
Cu	26	26	6.85	<	Step 1	11.6	<0.001	LOW	
Hg*	26	1	0.01	II	Step 3	0.01	1.000	LOW	
Ni	26	13	0.02	>	Step 2	0.01	0.001	POTENTIAL	
Pb	26	2	0.01	=	Step 3	0.01	0.371	POTENTIAL	
Se	26	23	0.29	<	Step 1	0.31	0.001	LOW	
Zn	26	25	12	<	Step 1	16	<0.001	LOW	

^{*} Wilcoxon's test returns an error when all test and reference data are equal, which usually occurs when all results are < the analytical limit of reporting. So although the result is not statistically significant the TSM is considered = TV.

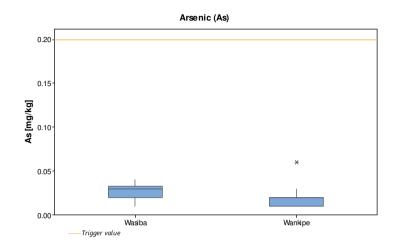


Figure F-1 Arsenic in fish flesh upper river test sites 2015

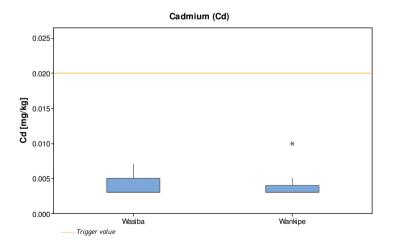


Figure F-3 Cadmium in fish flesh upper river test sites 2015

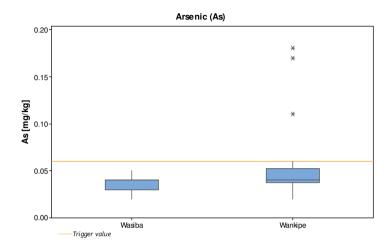


Figure F-2 Arsenic in prawn abdomen upper river test sites 2015

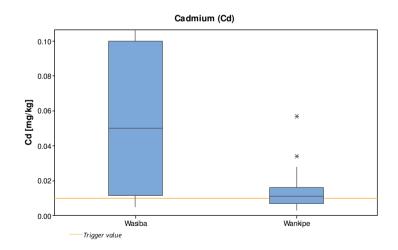


Figure F-4 Cadmium in prawn abdomen upper river test sites 2015

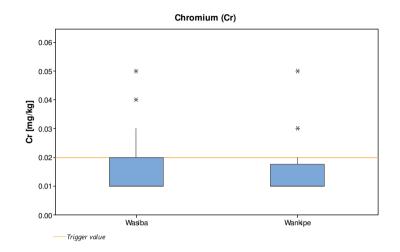


Figure F-5 Chromium in fish flesh upper river test sites 2015

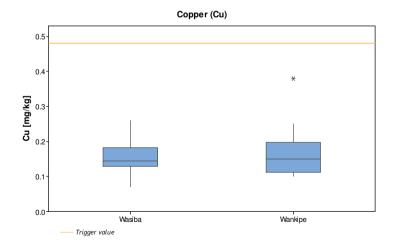


Figure F-7 Copper in fish flesh upper river test sites 2015

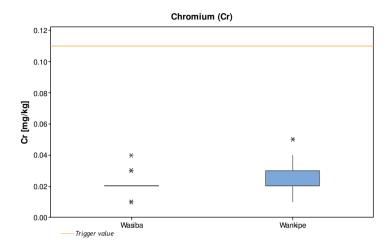


Figure F-6 Chromium in prawn abdomen Upper River test sites 2015

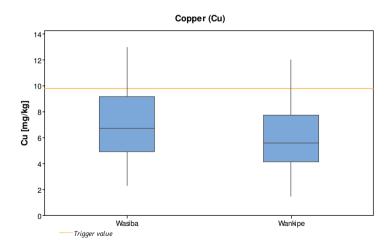


Figure F-8 Copper in prawn abdomen upper river test sites 2015

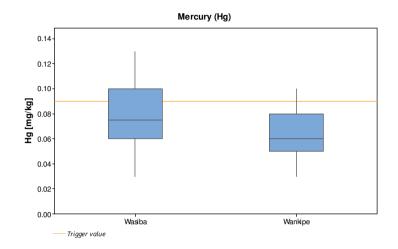


Figure F-9 Mercury in fish flesh upper river test sites 2015

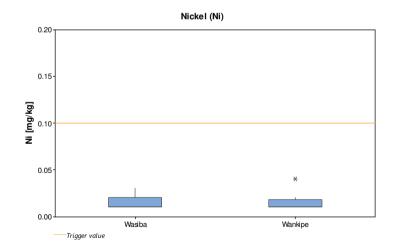


Figure F-11 Nickel in fish flesh upper river test sites 2015

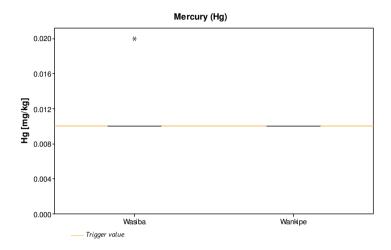


Figure F-10 Mercury in prawn abdomen upper river test sites 2015

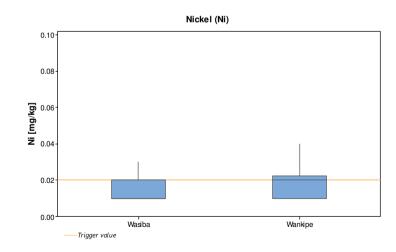


Figure F-12 Nickel in prawn abdomen upper river test sites 2015

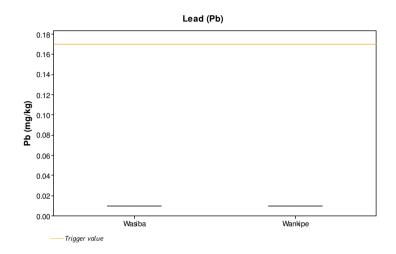


Figure F-13 Lead in fish flesh upper river test sites 2015

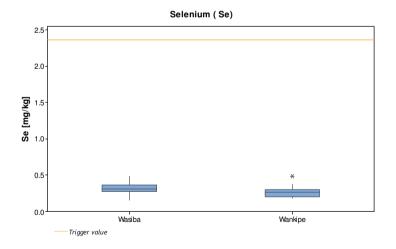


Figure F-15 Selenium in fish flesh upper river test sites 2015

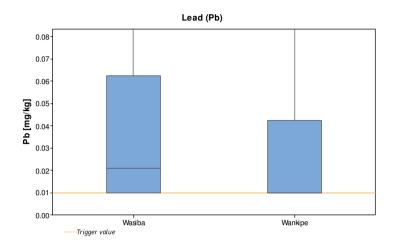


Figure F-14 Lead in prawn abdomen upper river test sites 2015

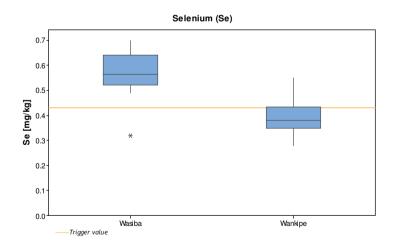


Figure F-16 Selenium in prawn abdomen upper river test sites 2015

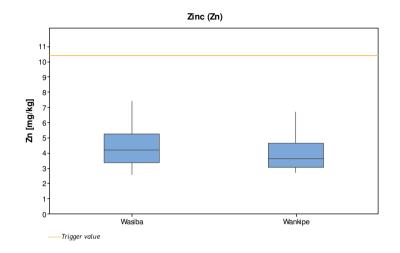


Figure F-17 Zinc in fish flesh upper river test sites 2015

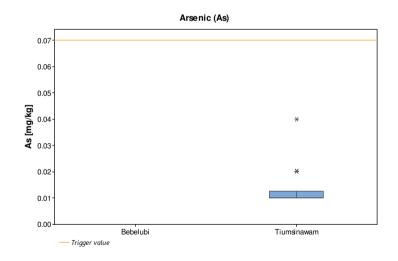


Figure F-19 Arsenics in fish flesh lower river test sites 2015

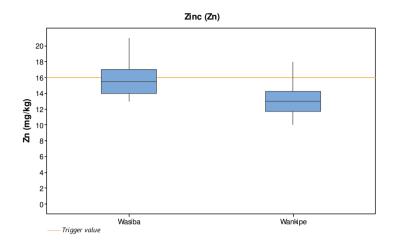


Figure F-18 Zinc in prawn abdomen upper river test sites 2015

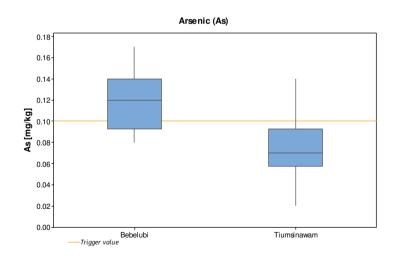


Figure F-20 Arsenic in prawn abdomen lower river test sites 2015

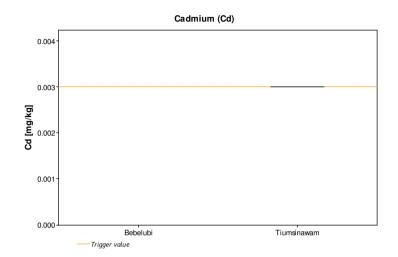


Figure F-21 Cadmium in fish flesh lower river test sites 2015

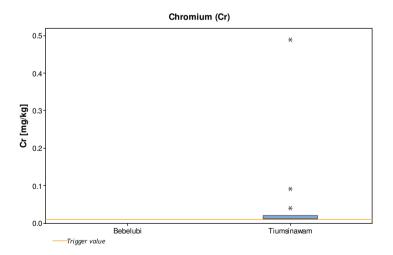


Figure F-23 Chromium in fish flesh lower river test sites 2015

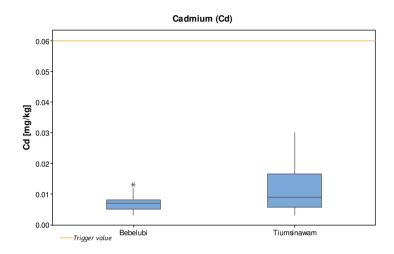


Figure F-22 Cadmium in prawn abdomen lower river test sites 2015

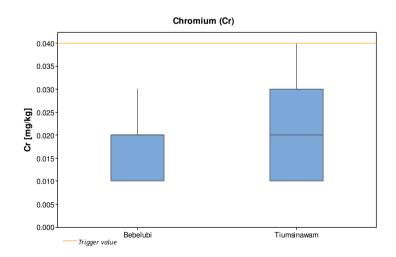


Figure F-24 Chromium in prawn abdomen lower river test sites 2015

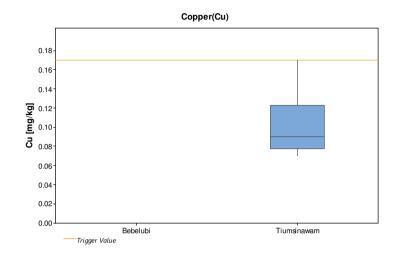


Figure F-25 Copper in fish flesh lower river test sites 2015

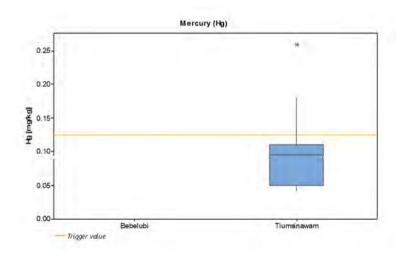


Figure F-27 Mercury in fish flesh lower river test sites 2015

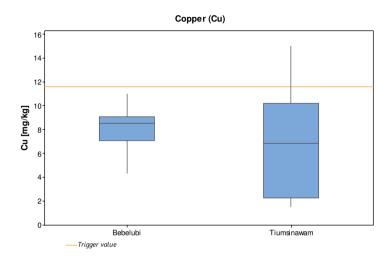


Figure F-26 Copper in prawn abdomen lower river test sites 2015

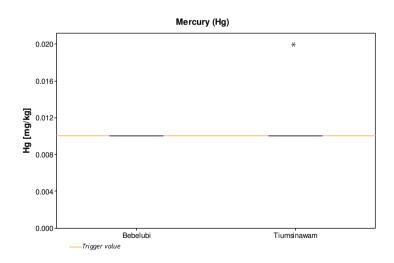


Figure F-28 Mercury in prawn abdomen lower river test sites 2015

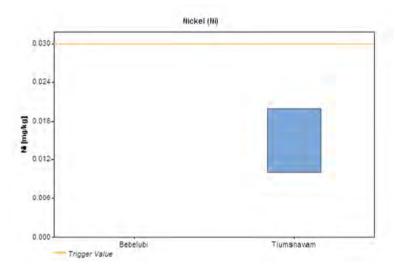


Figure F-29 Nickel in fish flesh lower river test sites 2015

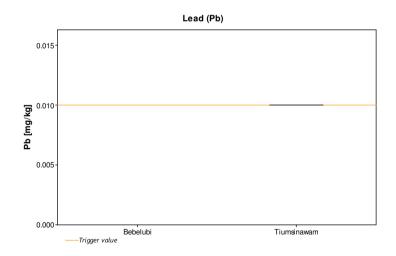


Figure F-31 Lead in fish flesh lower river test sites 2015

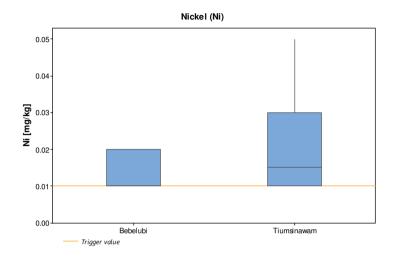


Figure F-30 Nickel in prawn abdomen lower river test sites 2015

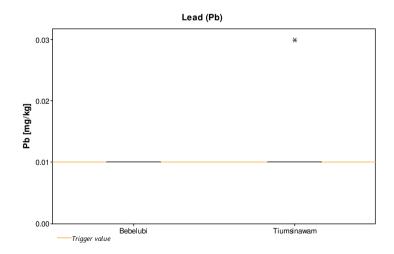


Figure F-32 Lead in prawn abdomen lower river test site 2015

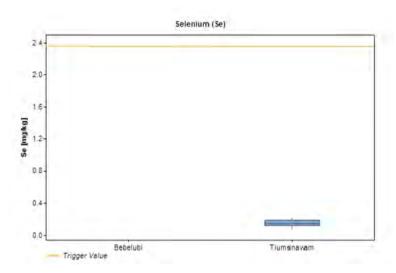


Figure F-33 Selenium in fish flesh lower river test sites 2015

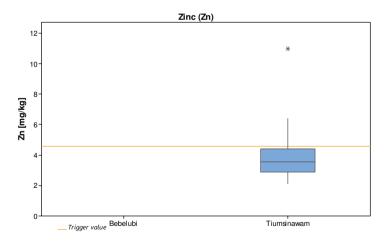


Figure F-35 Zinc in fish flesh lower river test sites 2015

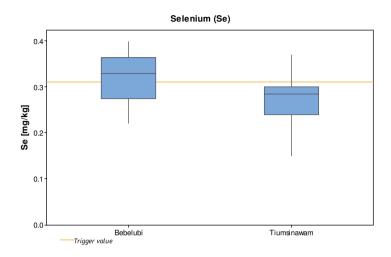


Figure F-34 Selenium in prawn abdomen lower river test sites 2015

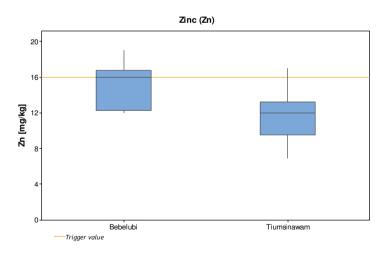


Figure F-36 Zinc in prawn abdomen lower river test sites 2015

Table F-6 Performance assessment – Based on the trend of the annual median of tissue metals in fish flesh at upper river test sites relative to the trend of the annual median of tissue metals in fish flesh at upper river reference sites from 2011-2015 using Spearman Rank Test.

Fish Flesh	Parameter	Spearman's	D Volue (D. 0.05)	Trend 2011 - 2015
Site	Parameter	rho	P-Value (P=0.05)	Trend 2011 - 2015
	As	0.866	0.058	No change over time
	Cd	-0.707	0.182	No change over time
	Cr	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Wasiba	Cu	-0.700	0.188	No change over time
(Trend of Annual Median	Hg	0.667	0.219	No change over time
2011 - 2015)	Ni	-0.354	0.559	No change over time
,	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	-0.400	0.505	No change over time
	Zn	-0.900	0.037	Decreasing over time
	As	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cd	-0.707	0.182	No change over time
	Cr	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
Wankipe	Cu	-0.700	0.188	No change over time
(Trend of Annual Median	Hg	0.224	0.718	No change over time
2011 - 2015)	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	-0.400	0.505	No change over time
	Zn	-0.700	0.188	No change over time

LOR = Analytical Limit of Reporting. <LOR – All results within the data set are <LOR, in which case the Spearman Rank test returns an error result, however the results indicate no change over time.

Table F-7 Performance assessment – Based on the trend of the annual median of tissue metals in prawn abdomen at upper river test sites relative to the trend of the annual median of tissue metals in prawn abdomen at upper river reference sites from 2011 -2015 using Spearman Rank Test.

Prawn Abdomen Site	Parameter	Spearman's rho	P-Value (P=0.05)	Trend 2011 - 2015
Oite	As	0.000	1.000	No change over time
	Cd	-0.600	0.285	No change over time
	Cr	0.577	0.308	No change over time
Wasiba	Cu	0.564	0.322	No change over time
(T.) (A.) (A.)	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
(Trend of Annual Median 2011 - 2015)	Ni Ni	-0.354	0.559	No change over time
2011 - 2013)	Pb	0.707	0.182	No change over time
	Se	0.300	0.624	No change over time
	Zn	0.051	0.935	No change over time
	As	-0.255	0.424	No change over time
	Cd	0.248	0.437	No change over time
	Cr	-0.226	0.480	No change over time
Wankipe	Cu	0.063	0.846	No change over time
(Trend of Annual Median	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
2011 - 2015)	Ni	0.686	0.014	Increasing over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	0.284	0.372	No change over time
	Zn	-0.233	0.467	No change over time

LOR = Analytical Limit of Reporting. <LOR - All results within the data set are <LOR, in which case the Spearman Rank test returns an error result, however the results indicate no change over time.

Table F-8 Performance assessment – Based on the trend of the annual median of tissue metals in fish flesh at lower river test sites relative to the trend of the annual median of tissue metals in fish flesh at lower river reference sites from 2011-2015 of the operation using Spearman Rank Test.

Fish flesh Site	Parameter	Spearman's rho	P-Value (P=0.05)	Trend 2011 - 2015
Bebelubi (Trend of Annual Median 2011 - 2015)	As	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cd	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cr	0.775	0.225	No change over time
	Cu	0.600	0.400	No change over time
	Hg	0.400	0.600	No change over time
	Ni	-0.258	0.742	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Zn	0.000	1.000	No change over time
Tiumsinawam (Trend of Annual Median 2011 - 2015)	As	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cd	-0.707	0.182	No change over time
	Cr	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Cu	-0.667	0.219	No change over time
	Hg	0.700	0.188	No change over time
	Ni	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	0.738	0.155	No change over time
	Zn	0.616	0.269	No change over time

LOR = Analytical Limit of Reporting. <LOR - All results within the data set are <LOR, in which case the Spearman Rank test returns an error result, however the results indicate no change over time.

Table F-9 Performance assessment – Based on the trend of the annual median of tissue metals in prawn abdomen at lower river test sites relative to the trend of the annual median of tissue metals in prawn abdomen at lower river reference sites from 2011- 2015 of the operation using Spearman Rank Test.

Prawn Abdomen Site	Parameter	Spearman's rho	P-Value (P=0.05)	Trend 2011 - 2015
Site	As	0.400	0.505	No change aver time
				No change over time
	Cd	-0.707	0.182	No change over time
	Cr	0.354	0.559	No change over time
Bebelubi	Cu	0.800	0.104	No change over time
(Trend of Annual Median 2011 - 2015)	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Ni	0.354	0.559	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	0.700	0.188	No change over time
	Zn	0.821	0.089	No change over time
	As	-0.316	0.604	No change over time
	Cd	-0.707	0.182	No change over time
Tiumsinawam	Cr	0.000	1.000	No change over time
	Cu	0.500	0.391	No change over time
(Trend of Annual Median 2011 - 2015)	Hg	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Ni	0.707	0.182	No change over time
	Pb	<lor< td=""><td><lor< td=""><td>No change over time</td></lor<></td></lor<>	<lor< td=""><td>No change over time</td></lor<>	No change over time
	Se	0.051	0.935	No change over time
	Zn	0.410	0.493	No change over time

LOR = Analytical Limit of Reporting. <LOR - All results within the data set are <LOR, in which case the Spearman Rank test returns an error result, however the results indicate no change over time